STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>AD NAME</th>
<th>CONFERENCE with Bouquet Col</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM NAME</td>
<td>Dry</td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td>Top of Road EL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

Dry & Bouquet are both conc lined

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td>Span Bridge</td>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td></td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>Pier Shape</td>
<td>2) Rectangle (Span X Rise)</td>
<td>Bitmus Coated</td>
<td>Projecting</td>
<td></td>
</tr>
<tr>
<td>Culvert Dam</td>
<td>3) Elliptical</td>
<td>Steel</td>
<td>Flush with Slope</td>
<td></td>
</tr>
<tr>
<td>Hillway</td>
<td>4) Con/Span</td>
<td>Timber</td>
<td>MES (Mitered End Section)</td>
<td></td>
</tr>
<tr>
<td>Culvert</td>
<td>5) Elevated Arch</td>
<td>Ductile</td>
<td>FES (Flared End Section)</td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td>6) Pipe Arch</td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Other</td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert
1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of bridge and channel information]

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bouquet is vert. wall conc. channel, side is trapezoidal</td>
</tr>
</tbody>
</table>
ADDITIONAL CHANNEL INFORMATION

d/h = Shopping mall
ULS = Construction

<table>
<thead>
<tr>
<th>Land Use</th>
<th>none</th>
</tr>
</thead>
</table>
| Vegetative Cover | conce
 | timent |
| Bed Material | clean |
| General Channel Condition | conce |
| Banks | developed |
| Overbanks | 1/4 rise of Try Cen
 | bottom width widened out
 | a bit for the
<pre><code> | lowering ~ 150' |
</code></pre>
<table>
<thead>
<tr>
<th>AD NAME</th>
<th>Feedington Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM NAME</td>
<td>Day</td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>701</td>
</tr>
<tr>
<td>X,Y COORDINATE</td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td></td>
</tr>
<tr>
<td>LENGTH</td>
<td></td>
</tr>
<tr>
<td>SIZE (W X H) & SHAPE</td>
<td></td>
</tr>
<tr>
<td>MATERIAL</td>
<td></td>
</tr>
<tr>
<td>Road to Bed</td>
<td></td>
</tr>
<tr>
<td>INLET/OUTLET TYPE</td>
<td>Top of Road EL</td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

Closing Span Bridge

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Span Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Headwall</td>
</tr>
<tr>
<td></td>
<td>Pier Shape</td>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td></td>
<td>Culvert</td>
<td>2) Rectangle (Span X Rise)</td>
<td>Bitmus Coated</td>
<td>Projecting</td>
</tr>
<tr>
<td></td>
<td>Dam</td>
<td>3) Elliptical</td>
<td>Steel</td>
<td>Flush with Slope</td>
</tr>
<tr>
<td></td>
<td>Illway</td>
<td>4) Con/Span</td>
<td>Timber</td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td></td>
<td>Jersey Barrel</td>
<td>5) Elevated Arch</td>
<td>Ductile</td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td></td>
<td>Outlet</td>
<td>6) Pipe Arch</td>
<td>Clay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7) Other</td>
<td>Masonry Rock</td>
<td></td>
</tr>
</tbody>
</table>

- **Pier Shape**
 1) Circular pier
 2) Twin-Cylinder piers
 3) Elongated pier
 4) Triangular nose
 5) Square nose

- **Types (Shape) of Culvert**
 1) Circular
 2) Rectangle
 3) Elliptical
 4) Con/Span
 5) Elevated Arch
 6) Pipe Arch
 7) Other

- **Inlet/Outlet Type**
 - Culvert with Headwall & Wingwalls
 - Mitered to Conform to Slope
 - Projecting from Fill
<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BRIDGE INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECK THICKNESS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HYDRAULIC WIDTH</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

![Bridge Diagram]

Name: walls
Description: walls
PHOTOS: 4 pics
Land Use

Residential

Vegetative Cover

none

Bed Material

corr

General Channel Condition

corr

Banks

developed

Overbanks
Structure Survey Template

<table>
<thead>
<tr>
<th>AD Name</th>
<th>Gwinnota Dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Name</td>
<td>Dry</td>
</tr>
<tr>
<td>Structure #</td>
<td>92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Size (W X H) & Shape</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td></td>
<td></td>
<td></td>
<td>Top of Road EL</td>
<td></td>
</tr>
</tbody>
</table>

Special Note
(Conditions, Blockage, etc)

- Clear spec bridge

High Water Mark
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>Type</th>
<th>Culvert Type</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td>Span Bridge</td>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Steel</td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>Pier Shape</td>
<td>2) Rectangle</td>
<td>Bitumin Coated</td>
<td>Timber</td>
<td>Projecting</td>
</tr>
<tr>
<td>Culvert</td>
<td>3) Elliptical</td>
<td>Ductile</td>
<td>Clay</td>
<td>Flush with Slope</td>
</tr>
<tr>
<td>Dam</td>
<td>4) Con/Span</td>
<td></td>
<td>Clay</td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td>Hillway</td>
<td>5) Elevated Arch</td>
<td></td>
<td>Masonry Rock</td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td>Culvert Barrel</td>
<td>6) Pipe Arch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td>7) Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape

- 1) Circular pier
- 2) Twin-Cylinder piers
- 3) Elongated pier
- 4) Triangular nose
- 5) Square nose

Types (Shape) of Culvert

- 1) Circular
- 2) Rectangle
- 3) Elliptical
- 4) Con/Span
- 5) Elevated Arch
- 6) Pipe Arch
- 7) Other

Inlet/Outlet Type

- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
ADDITIONAL CHANNEL INFORMATION

Land Use

Vegetative Cover

Bed Material

General Channel Condition

Banks

Overbanks

Some walls or fence.

Mant rd - fence
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>AD NAME</th>
<th>Date</th>
<th>COUNTY</th>
<th>PHOTO ID #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decane</td>
<td>10.22.08</td>
<td>LA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STREAM NAME</th>
<th>STRUCTURE #</th>
<th>X,Y COORDINATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay</td>
<td>83</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>SIZE (W X H) & SHAPE</th>
<th>MATERIAL</th>
<th>ROAD TO BED</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td></td>
<td></td>
<td></td>
<td>Top of Road EL</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE

Clear span bridge, cone lined

HIGH WATER MARK

(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>ROAD TO BED</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert Headwall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Projecting Wingwalls Type 0.5, 45°, 90°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Rectangle (Span X Rise)</td>
<td>Bitmus Coated</td>
<td>Flash with Slope Projecting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Elliptical</td>
<td>Steel</td>
<td>MES (Mitered End Section) Top of Road EL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Con/Span</td>
<td>Timber</td>
<td>FES (Flared End Section) From Topo Map (FT.NGVD) or (FT.NAVD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) Elevated Arch</td>
<td>Ductile</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6) Pipe Arch</td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Other</td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape

1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert

1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type

- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of bridge and channel information]

Name

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photos</td>
</tr>
</tbody>
</table>

Note side slopes may be steeper d/s than 4/1s. Need to verify.
ADDITIONAL CHANNEL INFORMATION

\(\frac{1}{3} : R = \text{open}, L = \text{school} \)

\(\frac{2}{3} : R = \text{school}, L = \text{residential} \)

Land Use

none, few residential & school trees

Vegetative Cover

conc. lined

Bed Material

Clean

General Channel Condition

conc lined

Banks

roads, development

Overbanks
Structure Survey Template

<table>
<thead>
<tr>
<th>AD NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pamplico TX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STREAM NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRUCTURE #</th>
<th>X,Y COORDINATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>Top of Road EL</td>
</tr>
</tbody>
</table>

Special Note

Very similar to ... Curves # 6

High Water Mark

(Description, Witness, and Data)

Culvert Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Barrels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td></td>
</tr>
<tr>
<td>Span Bridge</td>
<td></td>
</tr>
<tr>
<td>Pier Shape</td>
<td></td>
</tr>
<tr>
<td>Culvert</td>
<td></td>
</tr>
<tr>
<td>Dam</td>
<td></td>
</tr>
<tr>
<td>Tiltway</td>
<td></td>
</tr>
<tr>
<td>Uarter Barrel</td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td></td>
</tr>
</tbody>
</table>

Material

<table>
<thead>
<tr>
<th>Type</th>
<th>RCP (Reinforced Concrete Pipe)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMP (Corrugated Metal Pipe)</td>
</tr>
<tr>
<td></td>
<td>Bitmus Coated</td>
</tr>
<tr>
<td></td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td>Timber</td>
</tr>
<tr>
<td></td>
<td>Ductile</td>
</tr>
<tr>
<td></td>
<td>Clay</td>
</tr>
<tr>
<td></td>
<td>Masonry Rock</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height from Top to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td></td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td></td>
<td>Projecting</td>
</tr>
<tr>
<td></td>
<td>Flush with Slope</td>
</tr>
<tr>
<td></td>
<td>Top of Road EL</td>
</tr>
<tr>
<td></td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td></td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td></td>
<td>From Topo Map (FT.NGVD)</td>
</tr>
<tr>
<td></td>
<td>or (FT.NAVD)</td>
</tr>
</tbody>
</table>

Pier Shape

1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert

1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type

- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill

Note: Diagrams illustrate various types of culverts and their inlets/outlets.
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- **Top of Road**
 - Top Width
 - Pier Thickness
- **Deck Thickness**
 - Channel Top Width
- **Elevation**
 - Inverse
- **Channel Bottom Width**
 - Toe Width

Name

- **Sanw Wells**

Description

- **Approximately 11.5'**
- **10'**

PHOTOS

- **Mount id on both sides**
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>Residential</td>
</tr>
<tr>
<td>Vegetative Cover</td>
<td>Wood</td>
</tr>
<tr>
<td>Bed Material</td>
<td>Conc</td>
</tr>
<tr>
<td>General Channel Condition</td>
<td>Trap Conc</td>
</tr>
<tr>
<td>Banks</td>
<td>Residential</td>
</tr>
<tr>
<td>Overbanks</td>
<td></td>
</tr>
</tbody>
</table>
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>AD NAME</th>
<th>Tupelo Ridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM NAME</td>
<td>Dry</td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>605</td>
</tr>
<tr>
<td>TYPE</td>
<td>Railroad Bridge</td>
</tr>
<tr>
<td>LENGTH</td>
<td></td>
</tr>
<tr>
<td>SIZE (W X H) & SHAPE</td>
<td></td>
</tr>
<tr>
<td>MATERIAL</td>
<td></td>
</tr>
<tr>
<td>Road to Bed</td>
<td>Top of Road EL</td>
</tr>
<tr>
<td>INLET/OUTLET TYPE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL NOTE (Conditions, Blockage, etc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear span over top of lining</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIGH WATER MARK (Description, Witness, and Date)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pier Shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culvert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Barrel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Barrels</td>
<td></td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td>1) Circular</td>
<td></td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Bitmous Coated</td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>2) Rectangle</td>
<td></td>
<td>Steel</td>
<td></td>
<td>Projecting</td>
</tr>
<tr>
<td>(Span X Rise)</td>
<td></td>
<td>Timber</td>
<td></td>
<td>Flush with Slope</td>
</tr>
<tr>
<td>3) Elliptical</td>
<td></td>
<td>Ductile</td>
<td></td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td>4) Con/Span</td>
<td></td>
<td>Clay</td>
<td></td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td>5) Elevated Arch</td>
<td></td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Pipe Arch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pier Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Circular pier</td>
</tr>
<tr>
<td>2) Twin-Cylinder piers</td>
</tr>
<tr>
<td>3) Elongated pier</td>
</tr>
<tr>
<td>4) Triangular nose</td>
</tr>
<tr>
<td>5) Square nose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types (Shape) of Culvert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Circular</td>
</tr>
<tr>
<td>2) Rectangle</td>
</tr>
<tr>
<td>3) Elliptical</td>
</tr>
<tr>
<td>4) Con/Span</td>
</tr>
<tr>
<td>5) Elevated Arch</td>
</tr>
<tr>
<td>6) Pipe Arch</td>
</tr>
<tr>
<td>7) Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culvert with Headwall & Wingwalls</td>
</tr>
<tr>
<td>Mitered to Conform to Slope</td>
</tr>
<tr>
<td>Projecting from Fill</td>
</tr>
</tbody>
</table>

CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Bridge Diagram](image1)

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>PHOTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 pics</td>
</tr>
</tbody>
</table>

![Channel Diagram](image2)

- 11.5 ft:
- No transitions
- Clear span
ADDITIONAL CHANNEL INFORMATION

Land Use

residential

Vegetative Cover

some trees near homes

Bed Material

concrete

General Channel Condition

concrete trap

Banks

residential & roads

Overbanks

maint road on both sides
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>AD NAME</th>
<th>Copper Hill</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM NAME</td>
<td>Dry</td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>S6</td>
</tr>
<tr>
<td>X,Y COORDINATE</td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td>Railroad Bridge</td>
</tr>
<tr>
<td>LENGTH</td>
<td></td>
</tr>
<tr>
<td>SIZE (W X H) & SHAPE</td>
<td></td>
</tr>
<tr>
<td>MATERIAL</td>
<td></td>
</tr>
<tr>
<td>Road to Bed</td>
<td>Top of Road EL</td>
</tr>
<tr>
<td>INLET/OUTLET TYPE</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

Some similar to Yk closure, new RW = 14.5

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td></td>
<td>CMP (Corrugated Metal Pipe)</td>
<td></td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td></td>
<td>Bitmus Coated</td>
<td></td>
<td>Projecting</td>
</tr>
<tr>
<td></td>
<td>Steel</td>
<td></td>
<td>Flush with Slope</td>
</tr>
<tr>
<td></td>
<td>Timber</td>
<td></td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td></td>
<td>Ductile</td>
<td>Top of Road EL</td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td></td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert
1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type

- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
<table>
<thead>
<tr>
<th>CHANNEL INFORMATION</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ROAD TO BANK</td>
<td>CHANNEL TOP WIDTH</td>
<td>CHANNEL BOTTOM WIDTH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BRIDGE INFORMATION</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DECK THICKNESS</td>
<td>TOP WIDTH</td>
<td>TOE WIDTH</td>
</tr>
<tr>
<td>HYDRAULIC WIDTH</td>
<td>NUMBER OF PIERS</td>
<td>PIER THICKNESS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Top of Road
- Channel Top Width
- Deck Thickness
- Channel Elevation
- Invert
- Channel Bottom Width
- Toe Width

Photos:
- Name: curving curves below street (Copper Hill)
- Description: outlets on side of shopping center.
ADDITIONAL CHANNEL INFORMATION

Land Use
- Us residential
- Us shopping center

Vegetative Cover
- none

Bed Material
- lined

General Channel Condition
- trap ys
- vertical in box

Banks
- developed

Overbanks
- "1 pics .."
Structure Survey Template

AD Name: Barney
County: LA
Photo ID #:
Date: 10/22/08
Stream Name: Dry
Structure #: 47
X,Y Coordinate:
Inlet/Outlet Type: Top of Road EL

Special Note: Same as crossing 3, except Offset new 2' tall

High Water Mark: (Description, Witness, and Date)

<table>
<thead>
<tr>
<th>Type</th>
<th>Culvert Type</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td>Span Bridge</td>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td></td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>Pier Shape</td>
<td>2) Rectangle (Span X Rise)</td>
<td>Bitmus Coated</td>
<td></td>
<td>Projecting</td>
</tr>
<tr>
<td>Culvert</td>
<td>3) Elliptical</td>
<td>Steel</td>
<td></td>
<td>Flush with Slope</td>
</tr>
<tr>
<td>Dam</td>
<td>4) Con/Span</td>
<td>Timber</td>
<td></td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td>Downspout</td>
<td>5) Elevated Arch</td>
<td>Ductile</td>
<td>From Topo Map (FT.NGVD) or (FT.NAVD)</td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td>Outlet</td>
<td>6) Pipe Arch</td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Other</td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape:
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert:
1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type:
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of bridge and channel information]

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Channel</td>
</tr>
</tbody>
</table>

![Channel diagram with measurements: 10' and 32']
ADDITIONAL CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>Land Use</th>
<th>See Crossing 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetative Cover</td>
<td></td>
</tr>
<tr>
<td>Bed Material</td>
<td></td>
</tr>
<tr>
<td>General Channel Condition</td>
<td></td>
</tr>
<tr>
<td>Banks</td>
<td></td>
</tr>
<tr>
<td>Overbanks</td>
<td></td>
</tr>
</tbody>
</table>
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>AD NAME</th>
<th>TAMARACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM NAME</td>
<td>DRY</td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>28</td>
</tr>
<tr>
<td>X,Y COORDINATE</td>
<td></td>
</tr>
<tr>
<td>ROAD TO BED</td>
<td>Top of Road EL</td>
</tr>
<tr>
<td>INLET/OUTLET TYPE</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

Identical to crossing 2 @ Beckwood.

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Read to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Number of Barrels 1</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td></td>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td></td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td></td>
<td>2) Rectangle</td>
<td>Bitmus Coated</td>
<td></td>
<td>Projecting</td>
</tr>
<tr>
<td></td>
<td>3) Elliptical</td>
<td>Steel</td>
<td></td>
<td>Flush with Slope</td>
</tr>
<tr>
<td></td>
<td>4) Con/Span</td>
<td>Timber</td>
<td></td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td></td>
<td>5) Elevated Arch</td>
<td>Ductile</td>
<td></td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td></td>
<td>6) Pipe Arch</td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Other</td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape

1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert

1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Outlet Type

- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill

Diagram

- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- Top of Road
- Top Width
- Deck Thickness
- Channel Top Width
- Pier Thickness
- Channel Elevation
- Channel Bottom Width
- Toe Width

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>photos</td>
</tr>
</tbody>
</table>

ADDITIONAL CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>See Closing 2</td>
</tr>
<tr>
<td>Vegetative Cover</td>
<td></td>
</tr>
<tr>
<td>Bed Material</td>
<td></td>
</tr>
<tr>
<td>General Channel Condition</td>
<td></td>
</tr>
<tr>
<td>Banks</td>
<td></td>
</tr>
<tr>
<td>Overbanks</td>
<td></td>
</tr>
</tbody>
</table>
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>AD NAME</th>
<th>BOXWOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM NAME</td>
<td>DRY</td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>29</td>
</tr>
<tr>
<td>TYPE</td>
<td>LENGTH</td>
</tr>
<tr>
<td>Railroad Bridge</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)
Clear Box

HIGH WATER MARK
(Description, Witness, and Date)

CULVERT TYPE
- Bridge
- Span Bridge
- Pier Shape
- Culvert
- Dam
- Wall
- Jar Barrel
- Outlet

<table>
<thead>
<tr>
<th>Number of Barrels</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
</table>
| 1) Circular
2) Rectangle (Span X Rise)
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other | RCP (Reinforced Concrete Pipe)
CMP (Corrugated Metal Pipe)
Bitmus Coated
Steel
Timber
Ductile
Clay
Masonry Rock | Height from Top of Road to Invert
Top of Road EL | Headwall
Wingwalls Type 0°, 45°, 90°
Projecting
Flush with Slope
MES (Mitered End Section)
FES (Flared End Section) |

Pier Shape
- 1) Circular pier
- 2) Twin-Cylinder piers
- 3) Elongated pier
- 4) Triangular nose
- 5) Square nose

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
- Types (Shape) of Culvert
 - 1) Circular
 - 2) Rectangle
 - 3) Elliptical
 - 4) Con/Span
 - 5) Elevated Arch
 - 6) Pipe Arch
 - 7) Other
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Diagram of bridge and channel dimensions]

Name

Note: V/C Channel LOW = 10'

Description

Warped Concrete Transition
Land Use

residential

Vegetative Cover

Concrete

Bed Material

clean

General Channel Condition

trap channel, lowered below surrounding ground

Banks

residences, some trees

Overbanks

\[\frac{5}{8} \div 4 \div \frac{1}{8} \]

Channel

\[28^\circ\]

10'

3'
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>AD NAME</th>
<th>Dry Can Detention Pond</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM NAME</td>
<td>Dry Can</td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>10</td>
</tr>
<tr>
<td>X,Y COORDINATE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>SIZE (W X H) & SHAPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td></td>
<td></td>
<td></td>
<td>Top of Road EL</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

deflection pond + spillway downstream to fully lined conc channel

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Top of Road EL</td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>2) Rectangle (Span X Rise)</td>
<td>Bitums Coated</td>
<td>Flush with Slope</td>
<td>Projecting</td>
</tr>
<tr>
<td>3) Elliptical</td>
<td>Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Con/Span</td>
<td>Timber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Elevated Arch</td>
<td>Ductile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Pipe Arch</td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) Other</td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert
1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Bridge Diagram]

Note: 3 inlets to detain pond
Channel dls is fully lined core trap with vertical freeboard

PHOTOS

3 pictures
| **Land Use** | *Residential adjacent to d/s*
| **Vegetative Cover** | *none*
| **Bed Material** | *Clean / clear*
| **General Channel Condition** | *Concrete lined trap d/s*
| **Banks** | *Residential*
| **Overbanks** |