STRUCTURE SURVEY TEMPLATE

ROAD NAME: HWY 126 + Frontage → Santa Maria Sta 46 Highway 126

COUNTY: [Redacted]

PHOTO ID #: [Redacted]

STREAM NAME: Fagan Creek

STRUCTURE #: 1

XY COORDINATE: [Redacted]

TYPE: Railroad Bridge

LENGTH: [Redacted]

SIZE (W X H) & SHAPE: [Redacted]

MATERIAL: [Redacted]

Road to Bed: Top of Road EL

INLET/OUTLET TYPE: [Redacted]

SPECIAL NOTE (Conditions, Blockage, etc): Rectangular Concrete channel down almost to the SCR

HIGH WATER MARK (Description, Witness, and Date): Slight drop on end of RC.

CULVERT TYPE

<table>
<thead>
<tr>
<th>Bridge</th>
<th>Span Bridge</th>
<th>Pier Shape</th>
<th>Culvert</th>
<th>Dam</th>
<th>Spillway</th>
<th>Riser Barrel</th>
<th>Outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Barrels</td>
<td>2</td>
<td>Circular</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
<td>10' x 10'</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Rectangle (Span X Rise)</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
</tr>
<tr>
<td>3</td>
<td>Elliptical</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
</tr>
<tr>
<td>4</td>
<td>Con/Span</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
</tr>
<tr>
<td>5</td>
<td>Elevated Arch</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
</tr>
<tr>
<td>6</td>
<td>Pipe Arch</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
</tr>
<tr>
<td>7</td>
<td>Other</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
<td>10' x 10'</td>
<td>1</td>
<td>Circular</td>
</tr>
</tbody>
</table>

MATERIAL

- RCP (Reinforced Concrete Pipe)
- CMP (Corrugated Metal Pipe)
- Bituminous Coated
- Steel
- Timber
- Ductile
- Clay
- Masonry Rock
- Masonry Rock

Road to Bed: From Topo Map (FT.NGVD) or (FT.NAVD)

INLET/OUTLET TYPE

- Headwall
- Wingwalls Type 90°, 45°, 90°
- Projecting
- Flush with Slope
- MES (Mitered End Section)
- FES (Fiared End Section)

Pier Shape

- 1) Circular pier
- 2) Twin-Cylinder pier
- 3) Elongated pier
- 4) Triangular nose
- 5) Square nose

Inlet/Outlet Type

- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill

Types (Shape) of Culvert

- 1) Circular
- 2) Rectangle
- 3) Elliptical
- 4) Con/Span
- 5) Elevated Arch
- 6) Pipe Arch
- 7) Other
CHANNEL INFORMATION
<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION
<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram: [Top of Road Diagram]

Photos

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Channel DBs & crossing wall height increases twice max = 7'</td>
</tr>
<tr>
<td></td>
<td>Rect channel bw = 30'</td>
</tr>
<tr>
<td></td>
<td>Channel ds of concrete is clear of veg on bottom & R side Some brush on L bank</td>
</tr>
</tbody>
</table>
Additional Channel Information

D/3 R = residential

D/3 C = business/RV

0% 0% = residential

w/v dk -- few trees

local to crossing -- nothing

Vegetative Cover

Clean RC channel

Bed Material

good shape

General Channel Condition

vertical --- way dk = ~ 2:1 earth

veg on L bank

Banks

Flat

D/3 L bank = Big Berkeley

maint road - R obs.

fenced both sides

Overbanks

0% - long pier nose

3% channel

D/3

10 10

10 10

10

7' (min)

30'

7' (max)

5' (min)

D/3

10

10

18'

D/3

20'

7'

note: 0% C bank is taller than R bank.

R = 65' H = 7' 9" (?)
STRUCTURE SURVEY TEMPLATE

ROAD NAME: [Handwritten: Buddhist Santa Anna / STECKEL]

STREAM NAME: Byer Creek

STRUCTURE #: 2

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>SIZE (W X H) & SHAPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td></td>
<td></td>
<td></td>
<td>Top of Road EL</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>8 span Bridge</td>
<td>20' clear span</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Projecting Headwall Wingwalls Type 0°, 45°, 90°</td>
<td></td>
</tr>
<tr>
<td>Pier Shape</td>
<td>6' high</td>
<td>Bitmus Coated</td>
<td>Flush with Slope Headwall Wingwalls Type 0°, 45°, 90°</td>
<td></td>
</tr>
<tr>
<td>Culvert</td>
<td>1) Circular</td>
<td>Steel</td>
<td>From Topo Map Headwall Wingwalls Type 0°, 45°, 90°</td>
<td></td>
</tr>
<tr>
<td>Dam</td>
<td>2) Rectangle (Span X Rise)</td>
<td>Timber</td>
<td>(FT.NGVD) Headwall Wingwalls Type 0°, 45°, 90°</td>
<td></td>
</tr>
<tr>
<td>Spillway</td>
<td>3) Elliptical</td>
<td>Ductile</td>
<td>(FT.NAVD) Headwall Wingwalls Type 0°, 45°, 90°</td>
<td></td>
</tr>
<tr>
<td>Risers Barrel</td>
<td>4) Con/Span</td>
<td>Clay</td>
<td>MES (Mitered End Section) Headwall Wingwalls Type 0°, 45°, 90°</td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td>5) Elevated Arch</td>
<td>Masonry Rock</td>
<td>FES (Flared End Section) Headwall Wingwalls Type 0°, 45°, 90°</td>
<td></td>
</tr>
<tr>
<td>6) Pipe Arch</td>
<td>7) Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert
1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
Land Use

Residential

Vegetative Cover

Clear, Rein. Canc.

Bed Material

Clear

General Channel Condition

Vertical

Banks

Flat

Overbanks
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>COUNTY</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvard</td>
<td></td>
<td>3/5/08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STREAM NAME</th>
<th>PHOTO ID #</th>
<th>STRUCTURE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fagan Chin</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>SIZE (W X H) & SHAPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td></td>
<td></td>
<td></td>
<td>Top of Road</td>
<td>EL</td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Span Bridge</td>
<td>数量 (Barrels)</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>Pier Shape</td>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Top of Road</td>
<td>Projecting</td>
</tr>
<tr>
<td>Culvert</td>
<td>2) Rectangle (Span X Rise)</td>
<td>Bituminous Coated Steel</td>
<td>From Topo Map (FT.NGVD) or (FT.NAVD)</td>
<td>Flush with Slope</td>
</tr>
<tr>
<td>Dam</td>
<td>3) Elliptical</td>
<td>Steel</td>
<td>Headwall WingwallsType 0°, 90°</td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td>Spillway</td>
<td>4) Con/Span</td>
<td>Timber</td>
<td>Headwall Wingwalls Type 45°</td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td>Riser Barrel</td>
<td>5) Elevated Arch</td>
<td>Ductile</td>
<td>Headwall Wingwalls Type 90°</td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td>6) Pipe Arch</td>
<td>Clay</td>
<td>Headwall Wingwalls Type 90°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Other</td>
<td>Masonry Rock</td>
<td>Headwall Wingwalls Type 90°</td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape

1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert

1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type

- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- Top Width
- Deck Height
- Pier Thickness
- Channel Top Width
- Channel Bottom Width
- Toe Width
- Hydraulic Width

Photos

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photo List

FC3 #151-#154

Fence on both sides.
Land Use

Mixed use parks, res., busineses

Vegetative Cover

Occasional trees adjacent

Bed Material

Concrete lined

General Channel Condition

Clean, good shape

Banks

Verticed

Overbanks

Plat
STRUCTURE SURVEY TEMPLATE

ROAD NAME: Red Xing

STREAM NAME: Fagan Cn

STRUCTURE #: 4

### TYPE	LENGTH	SIZE (W X H) & SHAPE	MATERIAL	Road to Bed	INLET/OUTLET TYPE
Railroad Bridge | | | | | Top of Road EL

SPECIAL NOTE
(Conditions, Blockage, etc)

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Clear span</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td>Pier Shape</td>
<td></td>
<td>CMP (Corrugated Metal Pipe)</td>
<td></td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>Culvert</td>
<td>Number of Barrels</td>
<td>Bituminous Coated</td>
<td></td>
<td>Projecting</td>
</tr>
<tr>
<td>Dam</td>
<td>1) Circular</td>
<td>Steel</td>
<td>Headwall</td>
<td></td>
</tr>
<tr>
<td>Spillway</td>
<td>2) Rectangle (Span X Rise)</td>
<td>Timber</td>
<td>Wingwalls Type 0°, 45°, 90°</td>
<td></td>
</tr>
<tr>
<td>Scissor Barrel</td>
<td>3) Elliptical</td>
<td>Ductile</td>
<td>Projecting</td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td>4) Con/Spans</td>
<td>Clay</td>
<td>Flush with Slope</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) Elevated Arch</td>
<td>Masonry Rock</td>
<td>MES (Mitered End Section)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6) Pipe Arch</td>
<td></td>
<td>FES (Flared End Section)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert
1) Circular
2) Rectangle
3) Elliptical
4) Con/Spans
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of bridge and channel information]
<table>
<thead>
<tr>
<th>Land Use</th>
<th>mixed + school</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetative Cover</td>
<td>— palm tree</td>
</tr>
<tr>
<td>Bed Material</td>
<td>clean RC channel</td>
</tr>
<tr>
<td>General Channel Condition</td>
<td>good slope</td>
</tr>
<tr>
<td>Banks</td>
<td>Vertical</td>
</tr>
<tr>
<td>Overbanks</td>
<td>flat</td>
</tr>
</tbody>
</table>
Structure Survey Template

Date: 3-5-08

Load Name
- Private Drive

Stream Name
- Ffynnon Cym

Structure
- 5

X.Y. Coordinate
- [Top of Road or EL]

Special Note
(Conditions, Blockage, etc)

High Water Mark
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>Type</th>
<th>Culvert Type</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Clear span</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td>Span Bridge</td>
<td></td>
<td>CMP (Corrugated Metal Pipe)</td>
<td></td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>Pier Shape</td>
<td></td>
<td>Bitumin Coated Steel</td>
<td>From Topo Map (FT.NGVD) or (FT.NAVD)</td>
<td>Projecting</td>
</tr>
<tr>
<td>Culvert</td>
<td></td>
<td>Steel</td>
<td></td>
<td>Flush with Slope</td>
</tr>
<tr>
<td>Dam</td>
<td></td>
<td>Timber</td>
<td></td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td>Spillway</td>
<td></td>
<td>Ductile</td>
<td></td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td>Riser Barrel</td>
<td></td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td></td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape
1. Circular pier
2. Twin-Cylinder piers
3. Elongated pier
4. Triangular nose
5. Square nose

Types (Shape) of Culvert
1. Circular
2. Rectangle
3. Elliptical
4. Con/Span
5. Elevated Arch
6. Pipe Arch
7. Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
ADDITIONAL CHANNEL INFORMATION

Mixed + school

Land Use

Home

Vegetative Cover

Clean RC channel

Bed Material

Good

General Channel Condition

Vertical

Banks

Flat

Overbanks

Note: walls on R1 1/4 are taller than surrounding ground.

See trapezoidal inlet picture.

[Diagram of inlet with dimensions ~6.75’']
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet of long culvert</td>
<td></td>
</tr>
<tr>
<td>STREAM NAME</td>
<td>PHOTO ID#</td>
</tr>
<tr>
<td>Fagan Creek</td>
<td></td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>X Y COORDINATE</td>
</tr>
<tr>
<td>6</td>
<td>6-1 x 6-2</td>
</tr>
<tr>
<td>TYPE</td>
<td>LENGTH</td>
</tr>
<tr>
<td>Railroad Bridge</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td>Span Bridge</td>
<td>1) Circular</td>
<td>CMP (Converged Metal Pipe) Steel</td>
<td></td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>Pier Shape</td>
<td>2) Rectangle (Span X Rise)</td>
<td>Bitumen Coated</td>
<td></td>
<td>Projecting</td>
</tr>
<tr>
<td>Culvert Dam</td>
<td>3) Elliptical</td>
<td>Steel</td>
<td></td>
<td>Flush with Slope</td>
</tr>
<tr>
<td>Spillway</td>
<td>4) Con/Span</td>
<td>Timber</td>
<td></td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td>Riser Barrel</td>
<td>5) Elevated Arch</td>
<td>Ductile</td>
<td></td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td>Outlet</td>
<td>6) Pipe Arch</td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Other</td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert
1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of a bridge and channel with dimensions labeled: Top Width, Deck Thickness, Channel Top Width, Piers, and Hydraulic Width.]

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><Photo List></td>
</tr>
<tr>
<td>FC 6-1</td>
<td>#163 ~ #164</td>
</tr>
<tr>
<td>FC 6-2</td>
<td>#165 ~ #166</td>
</tr>
</tbody>
</table>
ADDITIONAL CHANNEL INFORMATION

Land Use

<table>
<thead>
<tr>
<th>dl5</th>
<th>ULs</th>
<th>many large eucalyptus trees on R bank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>heir</td>
</tr>
</tbody>
</table>

Vegetative Cover

<table>
<thead>
<tr>
<th>dl6</th>
<th>UL6</th>
<th>soft sand, silt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RC channel, clean</td>
</tr>
</tbody>
</table>

Bed Material

<table>
<thead>
<tr>
<th>dl5</th>
<th>UL5</th>
<th>eastern channel steep banks well on L, R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>irregular, some cattails</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>steep: vertical to 1:1</td>
</tr>
</tbody>
</table>

General Channel Condition

| | | Note: some walls on ob. |

Banks

| | | |

Overbanks

Note: inlet to this structure is 1/6 of RR.

\[\text{Inlet structure is still RC box.}\]
STRUCTURE SURVEY TEMPLATE

LOAD NAME: Santa Fe Trail

STREAM NAME: Fagan Creek

STRUCTURE #: #7

TYPE: Railroad Bridge

LENGTH:

SIZE (W x H) & SHAPE:

MATERIAL:

Road to Bed: Top of Road EL

INLET/OUTLET TYPE:

SPECIAL NOTE: Several pipe connections inside culvert

HIGH WATER MARK:

DESCRIPTION:

CULVERT TYPE:

<table>
<thead>
<tr>
<th>Type</th>
<th>Culvert Type</th>
<th>Material</th>
<th>Height from Top of Road to Invert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Single Box</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Headwall Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>Span Bridge</td>
<td></td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Projecting</td>
</tr>
<tr>
<td>Pier Shape</td>
<td></td>
<td>Bitmus Coated Steel</td>
<td>Flush with Slope</td>
</tr>
<tr>
<td>Culvert</td>
<td></td>
<td>Ductile Steel</td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td>Dam</td>
<td></td>
<td>Clay</td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td>Spillway</td>
<td></td>
<td>Masonry Rock</td>
<td></td>
</tr>
<tr>
<td>Riser Barrel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INLET/OUTLET TYPE:

Pier Shape

1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert

1) Circular
2) Rectangle
3) Elliptical
4) Conv/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type

- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHOTOS

Name: **Warped inlet and outlet walls**

Description: *(Handwritten)*

Photo List

FC7 #167~#171
ADDITIONAL CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>Land Use</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed: Residential + Cemetery (W, R side)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vegetative Cover</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Many Eucalyptus Trees DFS</td>
<td>DFS is a ‘greenbelt’ channel - Edgean Barrance Park</td>
</tr>
<tr>
<td>DFS = large grated rock @ outlet</td>
<td>lots of free litter DFS even more DFS</td>
</tr>
<tr>
<td>some sand/ gravel/ cobbles</td>
<td>some DFS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bed Material</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Irregular, winding DFS</td>
<td>much more thickly vegetated DFS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Channel Condition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Steep low bank DFS</td>
<td>within a larger channel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Banks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat, homes, cemetery</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overbanks</th>
<th></th>
</tr>
</thead>
</table>
STRUCTURE SURVEY TEMPLATE

LOAD NAME: Pipeline Crossing

STREAM NAME: Jegan Creek

STRUCTURE #: 7.5

TYPE: Railroad Bridge

LENGTH

SIZE (W X H) & SHAPE

MATERIAL

Road to Bed

INLET/OUTLET TYPE

X, Y COORDINATE

DATE: 3.5.08

COUNTY

PHOTO ID #

SPECIAL NOTE

note: block concrete protection on L bank - should show on aerials

HIGH WATER MARK

Description, Witness, and Date

CULVERT TYPE

<table>
<thead>
<tr>
<th>Bridge Type</th>
<th>Number of Barrels</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span Bridge</td>
<td>1) Circular</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td>Pier Shape</td>
<td>2) Rectangle (Span X Rise)</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Top of Road EL</td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td></td>
<td>3) Elliptical</td>
<td>Bitmus Coated</td>
<td>From Topo Map (FT.NGVD) or (FT.NAVD)</td>
<td>Projecting</td>
</tr>
<tr>
<td>Culvert</td>
<td>4) Con/Span</td>
<td>Steel</td>
<td></td>
<td>Flush with Slope</td>
</tr>
<tr>
<td>Dam</td>
<td>5) Elevated Arch</td>
<td>Timber</td>
<td></td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td>Spillway</td>
<td>6) Pipe Arch</td>
<td>Ductile</td>
<td></td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td>Riser Barrel</td>
<td>7) Other</td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td></td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PIER SHAPE

- 1) Circular pier
- 2) Twin-Cylinder piers
- 3) Elongated pier
- 4) Triangular nose
- 5) Square nose

Types (Shape) of Culvert

- 1) Circular
- 2) Rectangle
- 3) Elliptical
- 4) Con/Span
- 5) Elevated Arch
- 6) Pipe Arch
- 7) Other

INLET/OUTLET TYPE

- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photos

Name

Description

<Photo List>

FC.7.5 #172
ADDITIONAL CHANNEL INFORMATION

Land Use
- residences on L Bank protected by block wall

Vegetative Cover
- several tall eucalyptus

Bed Material
- sand/gravel

General Channel Condition
- natural

Banks
- very brush

Overbanks
- within a deep valley
Structure Survey Template

Road Name: detention basin, road immedi d/k
County:
Photo ID #:
X-Y Coordinate:
Structure #:

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Size (W x H) & Shape</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Top of Road EL</td>
</tr>
</tbody>
</table>

Special Note: immediate d/k is a dip crossing with a circular culvert. 8' dia

High Water Mark: (Description, Witness, and Date)

Type | **Culvert Type** | **Material** | **Road to Bed** | **Inlet/Outlet Type** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span Bridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pier Shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culvert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spillway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riser Barrel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Barrels: 1)
- Circular 8'
- 2) Rectangle (Span X Rise)
- 3) Elliptical
- 4) Conv/Span
- 5) Elevated Arch
- 6) Pipe Arch
- 7) Other

Type of Culvert:
- RCP (Reinforced Concrete Pipe)
- CMP (Corrugated Metal Pipe)
- Bolted Coated
- Steel
- Timber
- Ductile
- Clay
- Masonry Rock

Headwall:
- Wingwalls Type 0°, 45°, 90°
- Projecting
- Flush with Slope
- MES (Mitered End Section)
- FES (Flared End Section)

Inlet/Outlet Type:
- Headwall
- Wingwalls Type 0°, 45°, 90°
- Projecting
- Flush with Slope
- MES (Mitered End Section)
- FES (Flared End Section)

Pier Shape:
- 1) Circular pier
- 2) Twin-Cylinder piers
- 3) Elongated pier
- 4) Triangular nose
- 5) Square nose

Types (Shape) of Culvert:
- 1) Circular
- 2) Rectangle
- 3) Elliptical
- 4) Conv/Span
- 5) Elevated Arch
- 6) Pipe Arch
- 7) Other

Inlet/Outlet Type:
- Culvert with Headwall & Wingwalls
- Mitred to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of channel and bridge information](image)

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><Photo List></td>
</tr>
<tr>
<td>FC 8</td>
<td>#173 ~ #176</td>
</tr>
<tr>
<td>FC 9</td>
<td>#177 ~ #178</td>
</tr>
</tbody>
</table>
Land Use

open residential

Vegetative Cover

natural - trees, brush + eucalyptus

grouted rock @ outlet

Bed Material

dam yrs

irregular pl's - natural channel

General Channel Condition

variable - lots of brush yrs and forest pl's

Banks

channel is in

a deep valley

Overbanks

wide dip road

culvert projects at both ends

grouted rock slope protection at both ends
PRIVATE ORCHARD RD

ROAD NAME
- **Type:** Railroad Bridge
- **Length:**
- **Size (W X H):**
- **Material:**
- **Inlet/Outlet Type:** Top of Road (EL)

SPECIAL NOTE
- Steel culvert, dirt road buried around it. Looks like it was here awhile.

HIGH WATER MARK
- **Date:** 8-6-08
- **Description:**
- **Witness:**

CULVERT TYPE
- **Number of Barrels:** 2
- **Culvert Type:**
 - 1) Circular
 - 2) Rectangle (Span X Rise)
 - 3) Elliptical
 - 4) Con/Span
 - 5) Elevated Arch
 - 6) Pipe Arch
 - 7) Other

MATERIAL
- **Type:**
 - RCP (Reinforced Concrete Pipe)
 - CMP (Corrugated Metal Pipe)
 - Bitumen Coated
- **Material:**
 - Steel
 - Timber
 - Ductile
 - Clay
 - Masonry Rock

ROAD TO BED
- **Height from Top of Road to Invert:**
- **Top of Road (EL):**
- **Type:**
 - Headwall
 - Wingwalls Type 0°, 45°, 90°
 - Projecting
 - Flush with Slope
 - MES (Mitered End Section)
 - FES (Flared End Section)

PIER SHAPE
- 1) Circular pier
- 2) Twin-Cylinder piers
- 3) Elongated pier
- 4) Triangular nose
- 5) Square nose

TYPES (SHAPE) OF CULVERT
- 1) Circular
- 2) Rectangle
- 3) Elliptical
- 4) Con/Span
- 5) Elevated Arch
- 6) Pipe Arch
- 7) Other

INLET/OUTLET TYPE
- **Culvert with Headwall & Wingwalls**
- **Mitered to Conform to Slope**
- **Projecting from Fill**
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDRAULIC WIDTH</td>
<td>NUMBER OF PIERS</td>
<td>PIER THICKNESS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- Top of Road
- Top Width
- Deck Thickness
- Pier Thickness
- Channel Top Width
- Elevation
- Channel Bottom Width
- Hydraulic Width

Photos

Name

Description

- Extreme dip crossing - probably washed out
- Grouted rock or concrete

Photo List

TC10 #179 ~ #181
Land Use

broom + some willows

Vegetative Cover

cobbles + gravel

Bed Material

lots of veg growth - mostly willows

General Channel Condition

eater + rocks + veg

Banks

within a larger valley

Overbanks

[Diagram of a channel with dimensions and labels]