<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>DATE</th>
<th>COUNTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR X-737 new Huy 126</td>
<td>11/14/07</td>
<td>Ventura</td>
</tr>
<tr>
<td>STREAM NAME</td>
<td>PHOTO ID #</td>
<td></td>
</tr>
<tr>
<td>Todd Baranca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>XY COORDINATE</td>
<td></td>
</tr>
<tr>
<td>T131</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TYPE
- Railroad Bridge

LENGTH
- 40' clear span

MATERIAL
- Road to Bed: Top of Road

SPECIAL NOTE
- Vertical concrete abutments

HIGH-WATER MARK
- Description, Witness, and Date

CULVERT TYPE
- Number of Barrels
 - 1) Circular
 - 2) Rectangle (Span X Rise)
 - 3) Elliptical
 - 4) Con/Span
 - 5) Elevated Arch
 - 6) Pipe Arch
 - 7) Other

MATERIAL
- RCP (Reinforced Concrete Pipe)
- CMP (Corrugated Metal Pipe)
- Bituminous Coated Steel
- Timber
- Ductile
- Clay
- Masonry Rock
- Concrete

Road to Bed
- Height from Top of Road to Invert

INLET/OUTLET TYPE
- Headwall
- Wingwalls Type 0°, 45°, 90°
- Projecting
- Flush with Slope
- MES (Mitered End Section)
- FES (Flared End Section)

Pier Shape
- 1) Circular pier
- 2) Twin-Cylinder piers
- 3) Elongated pier
- 4) Triangular nose
- 5) Square nose

Types (Shape) of Culvert
- 1) Circular
- 2) Rectangle
- 3) Elliptical
- 4) Con/Span
- 5) Elevated Arch
- 6) Pipe Arch
- 7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>40'</td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'</td>
<td>40'</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>40'</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of bridge and channel information](image)

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16.5' to top of raft</td>
</tr>
</tbody>
</table>
ADDITIONAL CHANNEL INFORMATION

Venturía County Jail d/s on left
- over bank
- levee orchards either side

Land Use
- dense vegetation u/s + d/s
- arroyo, willow + eucalyptus

Vegetative Cover
- sandy material

Bed Material
- overgrown in somewhat steep, erodible banks
 - 2:1 to 3:1 slope (H:V)

General Channel Condition
- left bank granted revetment @ d/s end;
 - extends 40 yds d/s from bridge
- erosive sandy gravel material both banks u/s
- agriculture

Overbanks

![Diagram of channel](attachment:channel_diagram.png)
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>Telegraph Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM NAME</td>
<td>Todd B. Stream</td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>T732</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>SIZE (W X H) & SHAPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td>~ 65' x 10'</td>
<td></td>
<td></td>
<td>Top of Road EL</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

- Concrete drop @ d/r end

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Bitmus Coated</td>
<td>Projecting Flush with Slope</td>
</tr>
<tr>
<td></td>
<td>1) Circular</td>
<td>Steel</td>
<td>Top of Road EL</td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td></td>
<td>2) Rectangle (Span X Rise)</td>
<td>Timber</td>
<td>From Topo Map (FT.NGVD) or (FT.NAVD)</td>
<td>FES (Fiared End Section)</td>
</tr>
<tr>
<td></td>
<td>3) Elliptical</td>
<td>Ductile</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Con/Span</td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) Elevated Arch</td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6) Pipe Arch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill

Pier Shape
- 1) Circular pier
- 2) Twin-Cylinder piers
- 3) Elongated pier
- 4) Triangular nose
- 5) Square nose

Types (Shape) of Culvert
- 1) Circular
- 2) Rectangle
- 3) Elliptical
- 4) Con/Span
- 5) Elevated Arch
- 6) Pipe Arch
- 7) Other
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of bridge components including top width, deck thickness, and hydraulic width]

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vert. Ash haul 3</td>
</tr>
<tr>
<td></td>
<td>High Pressure gas</td>
</tr>
<tr>
<td></td>
<td>10'</td>
</tr>
<tr>
<td></td>
<td>12'</td>
</tr>
<tr>
<td></td>
<td>7'</td>
</tr>
<tr>
<td></td>
<td>30'</td>
</tr>
<tr>
<td></td>
<td>Pipe</td>
</tr>
</tbody>
</table>
Land Use

primarily willow

Vegetative Cover

sandy silt material

Bed Material

right abutment @ u/s side is being eroded
channel filled-in slightly on left

General Channel Condition

left and right banks are severely eroded, sandy material

Banks

left overbank d/s has floodwall ~5' on Far side of Todd Rd.

Overbanks

Orchard (on left side of channel) is encroaching on right abutment, forcing flow to right and eroding behind right abutment.
STRUCTURE SURVEY TEMPLATE

Road Name
- Ranch Rd (or Thames Guide)

Stream Name
- Todd Brook

Structure
- T13 3

Special Note
- Very eroded abutments

HIGH WATER MARK
- Description, Witness, and Date

Type
- Railroad Bridge

Length

Size (W x H) & Shape

Material
- Top of Road EL

Inlet/Outlet Type
- Very eroded abutments

CULVERT TYPE
- Bridge
 - Span Bridge
 - Pier Shape
 - Culvert
 - Dam
 - Spillway
 - Pier/Abutment
 - Outlet

Culvert Type
- Number of Barrels
 - 1) Circular
 - 2) Rectangle (Span X Rise)
 - 3) Elliptical
 - 4) Con/Span
 - 5) Elevated Arch
 - 6) Pipe Arch
 - 7) Other

Material
- RCP (Reinforced Concrete Pipe)
- CMP (Corrugated Metal Pipe)
- Bitmus Coated
- Steel
- Timber
- Ductile
- Clay
- Masonry Rock

Road to Bed
- Height from Top of Road to Invert
- Top of Road EL
- From Topo Map (FT.NGVD) or (FT.NAVD)

Inlet/Outlet Type
- Headwall
- Wingwalls Type 0°, 45°, 90°
- Projecting
- Flush with Slope
- MES (Mitered End Section)
- FES (Flared End Section)

Pier Shape
- 1) Circular pier
- 2) Twin-Cylinder piers
- 3) Elongated pier
- 4) Triangular nose
- 5) Square nose

Types (Shape) of Culvert
- 1) Circular
- 2) Rectangle
- 3) Elliptical
- 4) Con/Span
- 5) Elevated Arch
- 6) Pipe Arch
- 7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
<table>
<thead>
<tr>
<th>CHANNEL INFORMATION</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROAD TO BANK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BRIDGE INFORMATION</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECK THICKNESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDRAULIC WIDTH</td>
<td>NUMBER OF PIERS</td>
<td>PIER THICKNESS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name	Description

![Diagram of channel information and bridge details](image-url)
Land Use

Wetlands & a few palm trees.

Vegetative Cover

Gravel bottom material

Bed Material

Steep banks, but

General Channel Condition

Severely eroded abutments, steep banks, not much vegetation in the channel.

Banks

Residents on left, agriculture (celery) on the right

Overbanks
Structure Survey Template

Road Name: Foot Hills Rd
County: Ventura
Structure #: TB4
Date: 11/14/07

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Size (W x H) & Shape</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td>20x14'</td>
<td></td>
<td>Top of Road/EL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Note
(Conditions, Blockage, etc)

High Water Mark
(Description, Witness, and Date)

Culvert Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Culvert Type</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>Span Bridge</td>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td></td>
<td>Projecting</td>
</tr>
<tr>
<td>Pier Shape</td>
<td>2) Rectangle (Span X Rise)</td>
<td>Bitmus Coated</td>
<td></td>
<td>Flush with Slope</td>
</tr>
<tr>
<td>Culvert</td>
<td>3) Elliptical</td>
<td>Steel</td>
<td>From Topo Map</td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td>Dam</td>
<td>4) Con/ Span</td>
<td>Timber</td>
<td>(FT.NGVD) or (FT.NAVD)</td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td>Spillway</td>
<td>5) Elevated Arch</td>
<td>Ductile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riser Barrel</td>
<td>6) Pipe Arch</td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td>7) Other</td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concrete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert
1) Circular
2) Rectangle
3) Elliptical
4) Con/ Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of bridge and channel dimensions]

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ADDITIONAL CHANNEL INFORMATION

1/3 v/3
Avocado + lemons

Land Use
Grasses + shrubs - trees along bank

Vegetative Cover
Gravel + cobbles

Bed Material
Large, open channel

General Channel Condition
1/3 bank v/1/3 of bridge severely eroded a 50' corridor, sandy banks

Banks
Left bank 1/3 is gravel rock toward bend along the toe.
Drainage ditch on far side of road along the left overbank.

Overbanks
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>Hampton Canyon Ranch</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREAM NAME</td>
<td>Todd Borrome Wheeler Canyon</td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>TB5</td>
</tr>
<tr>
<td>DATE</td>
<td>11/14/07</td>
</tr>
<tr>
<td>COUNTY</td>
<td></td>
</tr>
<tr>
<td>PHOTO ID #</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>SIZE (W X H) & SHAPE</th>
<th>MATERIAL</th>
<th>ROAD TO BED</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td>~ 25' x 12'</td>
<td></td>
<td>Bituminous Coated</td>
<td>Top of Road/EL</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

HIGH WATER MARK
(Description, Witness, and Date)

CULVERT TYPE

<table>
<thead>
<tr>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>ROAD TO BED</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
</tr>
<tr>
<td>Pier Shape</td>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Headwall Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td></td>
<td>2) Rectangle</td>
<td>Bituminous Coated</td>
<td>Projecting</td>
</tr>
<tr>
<td></td>
<td>3) Elliptical</td>
<td>Steel</td>
<td>Flush with Slope</td>
</tr>
<tr>
<td></td>
<td>4) Con/Span</td>
<td>Ductile</td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td></td>
<td>5) Elevated Arch</td>
<td>Clay</td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td></td>
<td>6) Pipe Arch</td>
<td>Masonry Rock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape

1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert

1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type

- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- **Top of Road**
- **Channel Top Width**
- **Pier Thickness**
- **Deck Thickness**
- **Channel Bank Elevation**
- **Channel Bottom Width**
- **Toe Width**

Hydraulic Width

- **Width**

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

- Roll 2 on road intended into bridge
- Portion of abutment will block flow
- 6.5' width
- 25' length
ADDITIONAL CHANNEL INFORMATION

Land Use
open ranch land

Vegetative Cover

Bed Material
severly eroded banks d/s

General Channel Condition
vegetated banks 1/3 (dense), severly eroded banks
right banks 1/3 have vertical d/s

Banks
bank on right overbank

Overbanks
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>Wheeler Canyon RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTY</td>
<td>Ventura</td>
</tr>
<tr>
<td>STREAM NAME</td>
<td></td>
</tr>
<tr>
<td>PHOTO ID #</td>
<td></td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>TBC</td>
</tr>
<tr>
<td>TYPE</td>
<td>Railroad Bridge</td>
</tr>
<tr>
<td>LENGTH</td>
<td>100'</td>
</tr>
<tr>
<td>SIZE (W x H) & SHAPE</td>
<td>8' x 8'</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>Concrete</td>
</tr>
<tr>
<td>ROAD TO BED</td>
<td>Top of Road/EL</td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

HIGH WATER MARK
(Description, Witness, and Date)

TYPE	**CULVERT TYPE**	**MATERIAL**	**Road to Bed**	**INLET/OUTLET TYPE**
Bridge | Number of Barrels 1 | RCP (Reinforced Concrete Pipe) | Height from Top of Road to Invert | Headwall Wingwalls Type 0°, 45°, 90°
Span Bridge | 1) Circular | CMP (Corrugated Metal Pipe) | | Projecting Flush with Slope
Pier Shape | 2) Rectangle (Span X Rise) | Steel | | MES (Mitered End Section)
Culvert | 3) Elliptical | Timber | | FES (Flared End Section)
Dam | 4) Con/Span | Ductile | | Culvert with Headwall & Wingwalls
Spillway | 5) Elevated Arch | Clay | | Mitered to Conform to Slope
Riser Barrel | 6) Pipe Arch | Masonry Rock | | Projecting from Fill
Outlet | 7) Other | Concrete | | |

Pier Shape
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert
1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- Top of Road
- Top Width
- Pier Thickness
- Channel Top Width
- Elevation
- Channel Bottom Width
- Toe Width
- Deck Thickness

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Each land

Land Use

U/S channel + banks have little vegetation
d/l/s between T156 + T155, dense vegetation
 oak, willow, cattails, ferns, tree tobacco

Vegetative Cover

Sandy gravel material

Bed Material

General Channel Condition

U/S wide, relatively flat banks
d/l/s right bank very high + nearly vertical

Banks

Sandy, erodable soil

Overbanks
STRUCTURE SURVEY TEMPLATE

<table>
<thead>
<tr>
<th>ROAD NAME</th>
<th>Wheeler Canyon Rd → Private Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTY</td>
<td>Ventura</td>
</tr>
<tr>
<td>STRUCTURE #</td>
<td>T137</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>MATERIAL</th>
<th>ROAD TO BED</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td>35'</td>
<td>Top of Road/EL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)

severely eroded banks v/s

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>ROAD TO BED</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Headwall</td>
<td></td>
</tr>
<tr>
<td>Span Bridge</td>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td>Wingwalls Type 0°, 45°, 90°</td>
<td></td>
</tr>
<tr>
<td>Pier Shape</td>
<td>2) Rectangle (Span x Rise)</td>
<td>Bituminous Coated Steel</td>
<td>Projecting</td>
<td></td>
</tr>
<tr>
<td>Culvert</td>
<td>3) Elliptical</td>
<td>Timber</td>
<td>Flush with Slope</td>
<td></td>
</tr>
<tr>
<td>Dam</td>
<td>4) Con/Span</td>
<td>Ductile</td>
<td>MES (Mitered End Section)</td>
<td></td>
</tr>
<tr>
<td>Spillway</td>
<td>5) Elevated Arch</td>
<td>Clay</td>
<td>FES (Flared End Section)</td>
<td></td>
</tr>
<tr>
<td>Riser Barrel</td>
<td>6) Pipe Arch</td>
<td>Masonry Rock</td>
<td>From Topo Map (FT.NGVD) or (FT.NAVD)</td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td>7) Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert
1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
Channel Information

<table>
<thead>
<tr>
<th>Road to Bank</th>
<th>Channel Top Width</th>
<th>Channel Bottom Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bridge Information

<table>
<thead>
<tr>
<th>Deck Thickness</th>
<th>Top Width</th>
<th>Toe Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydraulic Width</th>
<th>Number of Piers</th>
<th>Pier Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of Channel and Bridge Information]

Photos

- Name: [Handwritten: nearly vertical sea embankments]
- Description: Nearly vertical sea embankments

![Diagram of Hydraulic Width]
Land Use

thick vegetation d/s

Vegetative Cover

sand + gravel bottom

Bed Material

General Channel Condition

u/s banks severely eroded

Banks

Overbanks
STRUCTURE SURVEY TEMPLATE

ROAD NAME: Wheeler Canyon
COUNTY: Ventura

STRUCTURE #: T39 (8810B in text)

TYPE: Railroad Bridge
LENGTH: 2' x 10' x 13'
SIZE (W X H): Concrete
MATERIAL: Top of Road/EL

SPECIAL NOTE: Handwritten notes

HIGH WATER MARK:
(Description, Witness, and Date)

CULVERT TYPE:
- Bridge
- Culvert
- Dam
- Spillway
- Riser Barrel
- Outlet

MATERIAL:
- Number of Barrels
- RCP (Reinforced Concrete Pipe)
- CMP (Corrugated Metal Pipe)
- Bitmus Coated
- Steel
- Timber
- Ductile
- Clay
- Masonry Rock

Road to Bed:
- Height from Top of Road to Invert
- Top of Road/EL

INLET/OUTLET TYPE:
- Headwall
- Wingwalls Type 0°, 45°, 90°
- Projecting
- Flush with Slope
- MES (Mitered End Section)
- FES (Flared End Section)

From Topo Map (FT.NGVD) or (FT.NAVD)

Pier Shape:
- 1) Circular pier
- 2) Twin-Cylinder piers
- 3) Elongated pier
- 4) Triangular nose
- 5) Square nose

Types (Shape) of Culvert:
- 1) Circular
- 2) Rectangle
- 3) Elliptical
- 4) Con/Span
- 5) Elevated Arch
- 6) Pipe Arch
- 7) Other

Inlet/Outlet Type:
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>BRIDGE INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECK THICKNESS</td>
</tr>
<tr>
<td>HYDRAULIC WIDTH</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

![Diagram of bridge and channel information]

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![Handwritten notes on diagram]</td>
</tr>
</tbody>
</table>

- Sand and gravel accumulation
ADDITIONAL CHANNEL INFORMATION

Land Use

Vegetative Cover
sand gravel

Bed Material
large gravel & rock drop structure d/s of bridge.

General Channel Condition
left bank d/s of drop structure is granted, and the grant is being undercut.

Banks
u/s pole + wire on right bank

Overbanks

B M. Ventura County Surveyor
89-11 Bench Mark

debos accumulation on u/s end in pier.
Structure Survey Template

Road Name: Wheeler Canyon
County: Ventura
Structure #: TB10

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Size (W x H) & Shape</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td>25' x 2'</td>
<td></td>
<td>Top of Road: EL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Note: Drop structure d/s

High Water Mark:
Type:
- Bridge
 - Span Bridge
 - Pier Shape
- Culvert
- Dam
- Spillway
- Riser Barrel
- Outlet

<table>
<thead>
<tr>
<th>Culvert Type</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
</table>
| Number of Barrels | RCP (Reinforced Concrete Pipe)
 1) Circular
 2) Rectangle (Span X Rise)
 3) Elliptical
 4) Con/Span
 5) Elevated Arch
 6) Pipe Arch
 7) Other
 CMP (Corrugated Metal Pipe)
 Bitmus Coated
 Steel
 Timber
 Ductile
 Clay
 Masonry Rock
| Height from Top of Road to Invert | Headwall Wingwalls Type 0°, 45°, 90°
 Projecting
 Flush with Slope
 MES (Mitered End Section)
 FES (Flared End Section)
| Top of Road: EL | From Topo Map
 (FT.NGVD) or
 (FT.NAVD) |

Pier Shape:
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert:
1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type:
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram showing channel and bridge information]

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![Photo with measurements]</td>
</tr>
</tbody>
</table>

- Top Width = 12 inches
- Hydraulic Width = 14.5 feet
ADDITIONAL CHANNEL INFORMATION

Land Use

Vegetative Cover

sand + gravel

Bed Material

General Channel Condition

vegetated banks

Banks

Overbanks
Structure Survey Template

<table>
<thead>
<tr>
<th>Road Name</th>
<th>Wheeler Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure #</td>
<td>TB11</td>
</tr>
<tr>
<td>Type</td>
<td>Railroad Bridge</td>
</tr>
<tr>
<td>Length</td>
<td>30'</td>
</tr>
<tr>
<td>Material</td>
<td>Concrete</td>
</tr>
<tr>
<td>Inlet/Outlet Type</td>
<td>Top of Road EL</td>
</tr>
</tbody>
</table>

Special Note
(Conditions, Blockage, etc)

High Water Mark
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>Type</th>
<th>Culvert Type</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pier Shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culvert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spillway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riser Barrel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Barrels
1) Circular
2) Rectangle (Span X Rise)
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Material
- RCP (Reinforced Concrete Pipe)
- CMP (Corrugated Metal Pipe)
- Bitmus Coated
- Steel
- Timber
- Ductile
- Clay
- Masonry Rock

Height from Top of Road to Invert
- Headwall Wingwalls Type 0°, 45°, 90°
- Projecting
- Flush with Slope
- MES (Mitered End Section)
- FES (Flared End Section)

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
LAND USE
willows + cattails

VEGETATIVE COVER
cobble bottom sediments

BED MATERIAL
drop structure d/s end.

GENERAL CHANNEL CONDITION
rt u/s bank has pole + cable retaining wall
rt d/s bank has granted riprap revetment through bend left d/s bank sandy erosion

BANKS

OVERBANKS
Structure Survey Template

Road Name: Wheeler Canyon - Private Rd
County: Ventura
Date: 11/14/07
Photo ID #:

Structure #: TB 12 (2 Bridges)
X, Y Coordinate:

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Size (W x H) & Shape</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td></td>
<td></td>
<td></td>
<td>Top of Road EL</td>
<td></td>
</tr>
</tbody>
</table>

Special Note: Small pedestrian bridge immediately ups of this bridge.

High Water Mark: (Description, Witness, and Date)

<table>
<thead>
<tr>
<th>Type</th>
<th>Culvert Type</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall Wingwalls Type 0°, 45°, 90° Projecting Flush with Slope</td>
</tr>
<tr>
<td>Pier Shape</td>
<td>1) Circular</td>
<td>CMP (Corrugated Metal Pipe) Bitmus Coated</td>
<td>Steel</td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td>Culvert</td>
<td>2) Rectangle (Span X Rise)</td>
<td></td>
<td>Ductile</td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td>Dam</td>
<td>3) Elliptical</td>
<td></td>
<td>Clay</td>
<td></td>
</tr>
<tr>
<td>Spillway</td>
<td>4) Con/Span</td>
<td>Steel</td>
<td>Masonry Rock</td>
<td></td>
</tr>
<tr>
<td>Tress Barrel</td>
<td>5) Elevated Arch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td>6) Pipe Arch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape:
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert:
1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type:
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photos

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical abutment walls</td>
</tr>
<tr>
<td></td>
<td>10 ft shelf</td>
</tr>
<tr>
<td></td>
<td>2 ft</td>
</tr>
</tbody>
</table>
ADDITIONAL CHANNEL INFORMATION

Land Use

Vegetative Cover

Bed Material

General Channel Condition

Banks

Overbanks
STRUCTURE SURVEY TEMPLATE

ROAD NAME: Live Oak Rd
COUNTY:
PHOTO ID #:

STRUCTURE #: 1B20
X Y COORDINATE:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>SIZE (W X H) & SHAPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Bridge</td>
<td>7' x 4'8"</td>
<td>4' x 8'6"</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Top of Road EL</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL NOTE
(Conditions, Blockage, etc)
Large scar at hole @ downstream end.

HIGH WATER MARK
(Description, Witness, and Date)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CULVERT TYPE</th>
<th>MATERIAL</th>
<th>Road to Bed</th>
<th>INLET/OUTLET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Span Bridge</td>
<td>1 Circular RCP</td>
<td>Height from Top of</td>
<td>Headwall</td>
</tr>
<tr>
<td></td>
<td>Pier Shape</td>
<td>2 Rectangle (Span X Rise) CMP (Corrugated Metal Pipe)</td>
<td>Road to Invert</td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td></td>
<td>Culvert</td>
<td>3 Elliptical Steel</td>
<td></td>
<td>Projecting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Con/Span Timber</td>
<td></td>
<td>Flush with Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Elevated Arch Ductile Clay</td>
<td>From Topo Map (FT.NGVD)</td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 Pipe Arch Masonry Rock</td>
<td>(FT.NAVD)</td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert
1) Circular
2) Rectangle
3) Elliptical
4) Con/Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRAULIC WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top of Road

- **Top Width**
- **Pier Thickness**
- **Deck Thickness**
- **Channel Top Width**
- **Channel Bottom Width**
- **Channel Elevation**

Hydraulic Width

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Land Use

Vegetative Cover

cobble + boulders.

Bed Material

General Channel Condition

Levee bank vs. has pole + cable + retaining wall

Banks

Overbanks

1999 live oak and crossing wheeler canyon rd.
STRUCTURE SURVEY TEMPLATE

ROAD NAME: 6645 Willow Creek Canyon

COUNTY:

STREAM NAME: Tode Barone 405-525-465

PHOTO ID #:

ROAD TO BED: Top of Road/EL

X Y COORDINATE:

STRUCTURE #: TB 14

INLET/OUTLET TYPE:

GENERAL NOTES:
Flow constructed to 20' wide below bridge. Large drop structure @ 1/5 size

HIGH WATER MARK
Description: Witness, and Date

<table>
<thead>
<tr>
<th>Type</th>
<th>Culvert Type</th>
<th>Material</th>
<th>Road to Bed</th>
<th>Inlet/Outlet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Number of Barrels</td>
<td>RCP (Reinforced Concrete Pipe)</td>
<td>Height from Top of Road to Invert</td>
<td>Headwall</td>
</tr>
<tr>
<td>Span Bridge</td>
<td>1</td>
<td>CMP (Corrugated Metal Pipe)</td>
<td></td>
<td>Wingwalls Type 0°, 45°, 90°</td>
</tr>
<tr>
<td>Pier Shape</td>
<td>1) Circular</td>
<td>Bitmus Coated</td>
<td></td>
<td>Projecting</td>
</tr>
<tr>
<td>Culvert</td>
<td>2) Rectangle (Span X Rise)</td>
<td>Steel</td>
<td></td>
<td>Flush with Slope</td>
</tr>
<tr>
<td>Dam</td>
<td>3) Elliptical</td>
<td></td>
<td></td>
<td>MES (Mitered End Section)</td>
</tr>
<tr>
<td>Spillway</td>
<td>4) Conv/ Span</td>
<td>Ductile</td>
<td></td>
<td>FES (Flared End Section)</td>
</tr>
<tr>
<td>Riser Barrel</td>
<td>5) Elevated Arch</td>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet</td>
<td>6) Pipe Arch</td>
<td>Masonry Rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pier Shape
1) Circular pier
2) Twin-Cylinder piers
3) Elongated pier
4) Triangular nose
5) Square nose

Types (Shape) of Culvert
1) Circular
2) Rectangle
3) Elliptical
4) Conv/ Span
5) Elevated Arch
6) Pipe Arch
7) Other

Inlet/Outlet Type
- Culvert with Headwall & Wingwalls
- Mitered to Conform to Slope
- Projecting from Fill
CHANNEL INFORMATION

<table>
<thead>
<tr>
<th>ROAD TO BANK</th>
<th>CHANNEL TOP WIDTH</th>
<th>CHANNEL BOTTOM WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRIDGE INFORMATION

<table>
<thead>
<tr>
<th>DECK THICKNESS</th>
<th>TOP WIDTH</th>
<th>TOE WIDTH</th>
<th>NUMBER OF PIERS</th>
<th>PIER THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **DECK THICKNESS**: 20'

![Bridge Diagram]

PHOTOS

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vertical abutment 3</td>
</tr>
</tbody>
</table>

![Photo]

- [Photo of bridge structure]
ADDITIONAL CHANNEL INFORMATION

Land Use

Vegetative Cover

Cobble

Bed Material

Severe channel erosion u/s + d/s of bridge

General Channel Condition

Banks

Overbanks