SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 1

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, it is jurisdictional regardless of whether or not the tributary is a perennial RPW.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.10170
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through _______ tributaries before entering TNW
 Project waters are _______ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Bedrock
- Substrate - Vegetation
- Other, Explain:
Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:
Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community
Other (list):
- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by:
- [] Mean High water Mark indicated by:
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics:
- [] Wetland Fringe Characteristics:

Habitat for:

- [] Federally Listed Species Explain findings:
- [] Fish/Spawn Areas Explain findings:
- [] Other environmentally -sensitive species Explain findings:
- [] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Surface Flow is:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:
This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Wetlands</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Tributaries of TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNW where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributary waters</td>
<td>Linear Feet:</td>
<td>Width (ft):</td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

| Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. |
| Provide estimates of jurisdictional waters within the review area (check all that apply): |
| Length (Linear Feet): | Width (feet): | Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

| Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. |
| Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: |
| Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: |
| Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. |
| Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Provide estimates for jurisdictional wetland in the review area (in acres):

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
- [] Other Non-wetland Waters MBR acres: _______
- [] Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters 788.96 linear feet (ft), 3.31 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

[] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

[] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

[] Office Concurs with data sheets/delineation report
[] Office Does Not Concur with data sheets/delineation report

[] Data Sheets Prepared by the Corps
[] Corps Navigable Water Study
[] US Geological Survey Hydrologic Atlas
 [] USGS NHD Data
 [] USGS 8 and 12 digit HUC Maps

[] US Geological Survey Map(s) Scale and Quad Name:

 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
| Feature ID: 1 |

| USDA Nat’l Res Conservation Service Soil Survey | Citation: |
| National Wetlands Inventory Maps | Cite Map Name: |
| State/Local Wetland Inventory Maps |
| FEMA/FIRM Maps: |
| 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929) |
| Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011 |
| Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012 |
| Previous Determinations File No. and Date of Response Letter: |
| Applicable/Supporting Case Law Citation: |
| Applicable/Supporting Scientific Literature Citation: |

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 10

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site:</td>
<td>Lat. 32.8482°N</td>
<td>Long. -111.2599°W</td>
</tr>
<tr>
<td>Name of nearest waterbody:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC):</td>
<td>15050100</td>
<td></td>
</tr>
</tbody>
</table>

- [] Check if map/diagram of review are are available upon request
- [] Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- [] Office (Desk) Determination. Date:
- [] Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- [] Waters subject to the ebb and flow of the tide.
- [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in review area
 - Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 - [] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00502
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 10

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [x] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [x] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [x] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

Mean High water Mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): []
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: [] Explain:
- Surface Flow is: []
- Characteristics:
- Subsurface Flow: [] Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []
- Flow is From: []
- Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th></th>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
</tr>
<tr>
<td></td>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
</tr>
<tr>
<td></td>
<td>Tributary waters Linear Feet: Width (Ft).</td>
</tr>
<tr>
<td></td>
<td>Other non-wetland waters: Acres:</td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th></th>
<th>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at Section III.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Provide estimates of jurisdictional waters within the review area (check all that apply):</td>
</tr>
<tr>
<td></td>
<td>Length (Linear Feet): Width (feet): Acres:</td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th></th>
<th>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
</tr>
<tr>
<td></td>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW</td>
</tr>
<tr>
<td></td>
<td>Provide acreage estimates for jurisdictional wetland in the review area: Acres:</td>
</tr>
</tbody>
</table>

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th></th>
<th>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Provide acreage estimates for jurisdictional wetland in the review area: Acres:</td>
</tr>
</tbody>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 552.82 linear feet (ft), 2.77 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 10

USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: __ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 100

- **State:** AZ
- **County/Parish/borough:** Pinal
- **City:** N/A
- **Center coordinates of site:** Lat. 32.8482°N Long. -111.2599°W
- **Name of nearest waterbody:** Gila River between Powers Butte and Gillespie Dam
- **Name of watershed or Hydrologic Unit Code (HUC):** 15050100

- **☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request**
- **☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.**

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- **☐ Office (Desk) Determination. Date:**
- **☑ Field Determination. Date(s): 10/2012**

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- **☐ Waters subject to the ebb and flow of the tide.**
- **☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.**

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. **Waters of the U.S.**

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 - **☐ TNWs (new)**
 - **☐ Wetlands adjacent to TNWs**
 - **☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs**
 - **☐ Non-RPWs that flow directly or indirectly into TNWs**
 - **☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs**
 - **☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs**
 - **☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs**
 - **☐ Impoundments of jurisdictional waters**
 - **☐ Isolated (interstate or intrastate) waters, including isolated wetlands**

 b. Identify (estimate) size of waters of the U.S. in the review area

 - Non-Wetlands waters [] Linear Feet [] Width (ft) and/or [] Acres
 - Wetlands Acres: []

 c. Limits (boundaries) of Jurisdiction based on:

2. **Non-Regulated Waters/Wetlands (check if applicable):**

 - **☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:**

 Explain: **Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.**
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: ____________________________
 - ☐ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.50007
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

Average Width (ft):	
Average Depth (ft):	
Average Side Slopes:	3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:
Stable.]

Presence of Run/Riffle/Pool Complexes. Explain:
Not present.

Tributary Geometry:
Relatively Straight

Tributary Gradient (approximate average slope):
1%

(c) Flow

Tributary Provides for:
Ephemeral Flow

Describe Flow Regime:
Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
Discrete and Confined
Characteristics:

Subsurface Flow:
No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply):
 OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community
 - [] Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally-sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________
Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________
Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________________________
 - Ecological connection Explain: __________________________
 - Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________
Project Wetlands: Aerial Miles from TNW: __________________________
Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
 - Linear Feet: _ Width (ft): _ TNW Acres _

- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - Linear Feet: _ Width (ft): _
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 - Length (Linear Feet): _ Width (ft): _ Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Citation</th>
<th>Cite Map Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>USDA Nat’l Res Conservation Service Soil Survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✔️</td>
<td>National Wetlands Inventory Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✔️</td>
<td>FEMA/FIRM Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✔️</td>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✔️</td>
<td>Aerial Photographs (Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
<td></td>
</tr>
<tr>
<td>✔️</td>
<td>Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
<td></td>
</tr>
<tr>
<td>✔️</td>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✔️</td>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✔️</td>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✔️</td>
<td>Other Information, Please Specify:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature
State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site:
Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 - Identify TNW: []
 - Vegetation: []

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.12144
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW
 - [] Tributary flows directly to TNW
 - [x] Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- Oil or scum line along shore objects: []
- Fine shell or debris deposits (foreshore): []
- Physical markings/characteristics: []
- Tidal gauges: []
- Other: []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ________________________

Identify Specific Pollutants, if known: ________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ________________________
- Wetland Fringe Characteristics: ________________________

Habitat for:

- Federally Listed Species Explain findings: ________________________
- Fish/Spawn Areas Explain findings: ________________________
- Other environmentally sensitive species Explain findings: ________________________
- Aquatic/Wildlife diversity Explain: ________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ______
- Wetland Type, Explain: ________________________
- Wetland Quality, Explain: ________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ________________________
- Surface Flow is: ________________________

Characteristics: ________________________

Subsurface Flow: ________________________

Explain Findings: ________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW: []
- Wetland Not Directly Abutting Non-TNW: []

Discrete wetland hydrologic connection Explain: ________________________

Ecological connection Explain: ________________________

Separated by berm/barrier Explain: ________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ______
Project Wetlands: Aerial Miles from TNW: ______

Flow is From: ________________________

Estimate approximate Location of Wetland within Floodplain: ________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):

- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:

- Fish/Spawn Areas Explain:

- Other environmentally-sensitive species Explain:

- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 Provide estimates for jurisdictional waters in the review are (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- □ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- □ Other Non-wetland Waters MBR acres:
- □ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- ✓ Non-wetland waters 1676.98 linear feet, 6.54 width (ft)
- □ Other waters acres
- □ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- ✓ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- ✓ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - □ Office Concurs with data sheets/delineation report
 - □ Office Does Not Concur with data sheets/delineation report
- □ Data Sheets Prepared by the Corps
- □ Corps Navigable Water Study
- □ US Geological Survey Hydrologic Atlas
 - □ USGS NHD Data
 - □ USGS 8 and 12 digit HUC Maps
- ✓ US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 101

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 102
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW:

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.02546 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☑ Tributary flows directly to TNW

 Tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW.
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 102

Project waters are Project waters are Project waters are aerial (straight) miles from tributary to RPW: 30 (or more) 6 aerial (straight) miles from tributary to TNW: aerial (straight) miles from tributary to RPW:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain: Stable.

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined
Subsurface Flow: No
Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________
- Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________
- Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: __________________________
- Ecological connection Explain: __________________________
- Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characteize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands
Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th>Tributary waters</th>
<th>Linear Feet:</th>
<th>Width (Ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other non-wetland waters:</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet):</th>
<th>Width (feet):</th>
<th>Acres:</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

- Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☒ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 102</th>
</tr>
</thead>
</table>

USDA Nat'l Res Conservation Service Soil Survey	Citation:
National Wetlands Inventory Maps	Cite Map Name:
State/Local Wetland Inventory Maps	
FEMA/FIRM Maps:	
100-year Floodplain Elevation is:	(National Geodetic Vertical Datum of 1929)
Aerial Photographs (Name and Date):	Aerials Express Phoenix 2009, BING Aerial Imagery 2011
Other Photographs (Name and Date):	Ground Photos; June through July 2012, September through October 2012
Previous Determinations	File No. and Date of Response Letter:
Applicable/Supporting Case Law Citation:	
Applicable/Supporting Scientific Literature Citation:	
Other Information, Please Specify:	

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 103

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are ☑ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are ☑ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aqueous resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting RPW, the wetland is "adjacent" to the tributary.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 1.39426
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain:

Tributary Condition/Stability (e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

<table>
<thead>
<tr>
<th>Description</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>High tide line indicated by:</td>
<td></td>
</tr>
<tr>
<td>Oil or scum line along shore objects</td>
<td></td>
</tr>
<tr>
<td>Fine shell or debris deposits (foreshore)</td>
<td></td>
</tr>
<tr>
<td>Physical markings/characteristics</td>
<td></td>
</tr>
<tr>
<td>Tidal gauges</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Mean High water Mark indicated by:</td>
<td></td>
</tr>
<tr>
<td>Survey to available datum</td>
<td></td>
</tr>
<tr>
<td>Physical markings</td>
<td></td>
</tr>
<tr>
<td>Vegetation lines/changes in vegetation types</td>
<td></td>
</tr>
</tbody>
</table>

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:__

Identify Specific Pollutants, if known:__

(iv) Biological Characteristics. Channel supports (check all that apply):

<table>
<thead>
<tr>
<th>Description</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riparian Corridor Characteristics</td>
<td></td>
</tr>
<tr>
<td>Wetland Fringe Characteristics</td>
<td></td>
</tr>
</tbody>
</table>

Habitat for:

<table>
<thead>
<tr>
<th>Description</th>
<th>Explain findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federally Listed Species</td>
<td></td>
</tr>
<tr>
<td>Fish/Spawn Areas</td>
<td></td>
</tr>
<tr>
<td>Other environmentally -sensitive species</td>
<td></td>
</tr>
<tr>
<td>Aquatic/Wildlife diversity</td>
<td></td>
</tr>
</tbody>
</table>

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Size (ac)</td>
<td></td>
</tr>
<tr>
<td>Wetland Type, Explain</td>
<td></td>
</tr>
<tr>
<td>Wetland Quality, Explain</td>
<td></td>
</tr>
</tbody>
</table>

Project Wetlands Cross or Serve as State Boundaries, Explain:__

(b) General Flow Relationship with Non-TNW:

Wetland Flow is:__

Surface Flow is:__

Characteristics:__

Subsurface Flow:__

Explain Findings:__

(c) Wetland Adjacency Determination with Non-TNW:

<table>
<thead>
<tr>
<th>Description</th>
<th>Explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Directly Abutting Non-TNW</td>
<td></td>
</tr>
<tr>
<td>Wetland Not Directly Abutting Non-TNW</td>
<td></td>
</tr>
<tr>
<td>Discrete wetland hydrologic connection</td>
<td></td>
</tr>
<tr>
<td>Ecological connection</td>
<td></td>
</tr>
<tr>
<td>Separated by berm/barrier</td>
<td></td>
</tr>
</tbody>
</table>

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:__

Project Wetlands: Aerial Miles from TNW:__

Flow is From:__

Estimate approximate Location of Wetland within Floodplain:__
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 103

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: _____________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 104
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "Navigable waters of the U.S.") within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☑ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "Waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPws that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters □ Linear Feet □ Width (ft) and/or □ Acres
 Wetlands Acres: □

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01283
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

Average Width (ft):	
Average Depth (ft):	
Average Side Slopes:	3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation

Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain:
Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

Other (list):

- [] Discontinuous? Explain:

Dye (or other) test performed:

Other (list):

- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: ____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally-sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________

Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________

Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: __________________________
- Ecological connection Explain: __________________________
- Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer, Characteristics: type, average width:
- Vegetation, type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species: Explain:
 - Fish/Spawn Areas: Explain:
 - Other environmentally-sensitive species: Explain:
 - Aquatic/Wildlife Diversity: Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td>Linear Feet:</td>
<td>Width (ft):</td>
<td>TNW Acres</td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th>Type</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary waters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet)</th>
<th>Width (feet)</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 307.46 linear feet (ft), 3.57 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 104

☐ USDA Nat’l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 105
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W
Name of nearest waterbody:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☒ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02385
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 □ Tributary flows directly to TNW
 □ Tributary flows through _______ tributaries before entering TNW
 Project waters are _______ river miles from TNW

 (a) Relationship with TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:

Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:

Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:

Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:

Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:

Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:

Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:

Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs: Linear Feet: __________ Width (ft): __________ TNW Acres __________
- Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: __________ Width (ft): __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ___________ Acres: ___________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ___________ width (ft): ___________
☐ Other Non-wetland Waters MBR acres: ___________
☐ Wetlands MBR acres: ___________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), ___________ width (ft): ___________
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 105</th>
</tr>
</thead>
</table>

USDA Nat'l Res Conservation Service Soil Survey	Citation:
National Wetlands Inventory Maps	Cite Map Name:
State/Local Wetland Inventory Maps	
FEMA/FIRM Maps:	

- 100-year Floodplain Elevation is: *(National Geodetic Vertical Datum of 1929)*

- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations	File No. and Date of Response Letter:
Applicable/Supporting Case Law	Citation:
Applicable/Supporting Scientific Literature	Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 106

State: AZ County/Parish/borough: Pinal County

City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters

 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters

 Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.55555
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
 APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 106

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
- [] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community
- Other (list):

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.)

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Conclusions are generally drawn considering the following situations, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________

☐ Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: __________ Width (Ft):

☐ Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally”. Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Provide estimates for jurisdictional wetland in the review area (in acres):

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ___________ width (ft): ___________
☐ Other Non-wetland Waters MBR acres: ___________
☐ Wetlands MBR acres: ___________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 715.19 linear feet (ft), 10.78 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 106</th>
</tr>
</thead>
</table>

USDA Nat’l Res Conservation Service Soil Survey

Citation: [List of references]

National Wetlands Inventory Maps

Cite Map Name: [Map name and citation]

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: [Insert elevation value] (National Geodetic Vertical Datum of 1929)

Aerial Photographs

(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs

(Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations

File No. and Date of Response Letter:

Applicable/Supporting Case Law

Citation: [Case law citation]

Applicable/Supporting Scientific Literature

Citation: [Scientific literature citation]

Other Information, Please Specify: [Additional information]

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 107

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
Identify TNW:
☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if
the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus
evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus
evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the
review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary
with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section
III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus
exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Watershed Size (sq mi):</th>
<th>49650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Area (sq mi):</td>
<td>0.21435</td>
</tr>
<tr>
<td>Average Annual Rainfall (in):</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in):</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW
☑ Tributary flows through 4 tributaries before entering TNW

Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- Other, Explain:
- [] Substrate - Vegetation

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Characteristics:

Subsurface Flow: No

Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

Other (list):

- [] Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________

- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

- Mean High water Mark indicated by: __________________________

- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________

- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________

- Fish/Spawn Areas Explain findings: __________________________

- Other environmentally-sensitive species Explain findings: __________________________

- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________

- Wetland Type, Explain: __________________________

- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________

Explain: __________________________

Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________

Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW

- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: __________________________

- Ecological connection Explain: __________________________

- Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

□ TNWs Linear Feet: Width (ft): TNW Acres
□ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

□ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

□ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 □ Tributary waters Linear Feet: Width (Ft).
 □ Other non-wetland waters:

3. Non-RPWs that flow directly or indirectly into TNWs.

□ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):
Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

□ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

□ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section IIIC.2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 590.57 linear feet (ft), 9.25 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 107

USDA Nat'l Res Conservation Service Soil Survey

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: []

Aerial Photographs (Name and Date):

Other Photographs (Name and Date):

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 108

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02276
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

(ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✓ Tributary flows through ___ tributaries before entering TNW

 Project waters are ___ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [X] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation

Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

[] Dye (or other) test performed:

Tributary Has (Check all that apply):

[] Bed and Banks

[] OHWM (check all the apply): OHWM Indicators:
- [] Clear, natural line impressed on the bank
- [] Changes in soil character
- [] Shelving
- [] Vegetation matted down, bent or absent
- [] Leaf litter disturbed or washed away
- [] Sediment deposition
- [] Water staining

Other (list):

[] Discontinuous? Explain:

[] Presence of litter and debris

[] Destruction of terrestrial vegetation

[] Presence of wrack line

[] Sediment sorting

[] Scour

[] Multiple observed or predicted flow events

[] Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally-sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: []
- Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs
 - Linear Feet: __________________ Width (ft): __________ TNW Acres __________
- Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Linear Feet: __________________ Width (ft): __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet):

Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters linear feet (ft), width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 108

USDA Nat’l Res Conservation Service Soil Survey

Citation:

☐ National Wetlands Inventory Maps

Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 109

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No " navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new) ☐ Wetlands adjacent to TNWs ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs ☐ Non-RPWs that flow directly or indirectly into TNWs ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs ☐ Impoundments of jurisdictional waters ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01397
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✓ Tributary flows through □ tributaries before entering TNW
 Project waters are □ river miles from TNW

 (b) Vegetation
 □ Wetland vegetation
 ✓ Aquatic vegetation

 (c) Aquatic stream
 □ Stream is perennial
 ✓ Stream is seasonal
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 109

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries. Explain:</td>
<td></td>
</tr>
</tbody>
</table>

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):

Average Width (ft):	
Average Depth (ft):	
Average Side Slopes:	3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [X] Cobbles
- [] Gravel
- [X] Substrate - Vegetation
- [] Other, Explain: Stable.

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed: Explain:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [X] OHWM (check all the apply): OHWM Indicators:
 - [X] Clear, natural line impressed on the bank
 - [X] Changes in soil character
 - [X] Shelving
 - [X] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

Other (list): Explain:

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

- Oil or water color is clear, discolored, oily film; water quality; general watershed characteristics, etc:
- Explain:

- Identify Specific Pollutants, if known:
- __________________________

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
- Explain:

- Identify Specific Pollutants, if known:
- __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________

- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________________________
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:
- __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________
- Explain:

Surface Flow is:
- __________________________

Characteristics:
- __________________________

Subsurface Flow: __________________________
- Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

Flow is From:
- __________________________

Estimate approximate Location of Wetland within Floodplain:
- __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Wetland Type</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Wetland Type</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributary waters</td>
<td>Acres:</td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters:</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Wetland Type</th>
<th>Length (Linear Feet)</th>
<th>Width (feet)</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates of jurisdictional waters within the review area (check all that apply):</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Wetland Type</th>
<th>Length (Linear Feet)</th>
<th>Width (feet)</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Wetland Type</th>
<th>Length (Linear Feet)</th>
<th>Width (feet)</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional wetlands.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 713.24 linear feet (ft), 6.06 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Approved Jurisdictional Determination Form
U.S. Army Corps of Engineers

Feature ID: 109

☐ USDA Nat'l Res Conservation Service Soil Survey

☐ National Wetlands Inventory Maps

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: _______________ (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs (Name and Date):

☐ Other Photographs (Name and Date):

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

☐ Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 11

- State: AZ
- County/Parish/borough: Pinal County
- City: N/A

- Center coordinates of site: Lat. 32.8482°N, Long. -111.2599°W

- Name of nearest waterbody:

- Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam

- Name of watershed or Hydrologic Unit Code (HUC): 15050100

- Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

- There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

- There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directed abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ________________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02668
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through __4____ tributaries before entering TNW

 Project waters are __30 (or more)____ river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list):

Discontinuous? Explain:

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

☐ Riparian Corridor Characteristics: ____________________________

☐ Wetland Fringe Characteristics: ____________________________

Habitat for:

☐ Federally Listed Species Explain findings: ____________________________

☐ Fish/Spawn Areas Explain findings: ____________________________

☐ Other environmentally sensitive species Explain findings: ____________________________

☐ Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): ____________________________

Wetland Type, Explain: ____________________________

Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

☐ Wetland Directly Abutting Non-TNW

☐ Wetland Not Directly Abutting Non-TNW

☐ Discrete wetland hydrologic connection Explain: ____________________________

☐ Ecological connection Explain: ____________________________

☐ Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs: Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 154.18 linear feet (ft), 4.68 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 11</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
</tbody>
</table>

- **Aerial Photographs**
 (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs**
 (Name and Date): Ground Photos; June through July 2012, September through October 2012

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation</td>
</tr>
</tbody>
</table>

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 110

 State: AZ
 County/Parish/borough: Pinal
 City: N/A

 Center coordinates of site: Lat. 32.8482°N
 Long. -111.2599°W

 Name of nearest waterbody:

 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam

 Name of watershed or Hydrologic Unit Code (HUC): 15050100

 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation

Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - **(i) General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 9.09191
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - **(ii) Physical Characteristics:**
 - ☑ Tributary flows directly to TNW
 - ☐ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW: []
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW: []
Project waters are aerial (straight) miles from tributary to RPW: []
Project waters cross or serve as state boundaries. Explain: []

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: [] Natural Explain: []

Tributary properties with respect to top of bank (estimate):
Average Width (ft): []
Average Depth (ft): []
Average Side Slopes: 3:1 []

Primary tributary substrate composition (check all that apply):
☑ Silts ☐ Sands ☐ Concrete ☐ Muck
☐ Cobbles ☐ Gravel ☐ Substrate - Vegetation Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: [] Stable.

Presence of Run/Riffle/Pool Complexes. Explain: [] Not present.

Tributary Geometry: [] Relatively Straight

Tributary Gradient (approximate average slope): 1% []

(c) Flow:

Tributary Provides for: [] Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5 []
Describe Flow Regime: Ephemeral []

Other Information on Duration and Volume:

Surface Flow is: [] Discrete and Confined Characteristics: []
Subsurface Flow: [] No Explain: []

☐ Dye (or other) test performed: []

Tributary Has (Check all that apply):

☐ Bed and Banks
☑ OHWM (check all the apply): OHWM Indicators:
☐ Clear, natural line impressed on the bank
☑ Changes in soil character
☐ Shelving
☐ Vegetation matted down, bent or absent
☐ Leaf litter disturbed or washed away
☐ Sediment deposition
☐ Water staining Other (list): []

☐ Discontinuous? Explain: []

Presence of litter and debris
□ Destruction of terrestrial vegetation
□ Presence of wrack line
□ Sediment sorting
☑ Scour
□ Multiple observed or predicted flow events
□ Abrupt change in plant community

Other (list): []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

- Mean high water mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain: []

Identify specific pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally listed species Explain findings: []
- Fish/spawn areas Explain findings: []
- Other environmentally sensitive species Explain findings: []
- Aquatic/wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland size (ac): []
- Wetland type, explain: []
- Wetland quality, explain: []

Project wetlands cross or serve as state boundaries, explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: [] Explain: []
- Surface Flow is: []

Characteristics: []

Subsurface Flow: [] Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland directly abutting non-TNW []
- Wetland not directly abutting non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project wetlands: river miles from TNW: []

Project wetlands: aerial miles from TNW: []

Flow is from: []

Estimate approximate location of wetland within floodplain: []
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrometric connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 □ TNWs Linear Feet: ____ Width (ft): ____ TNW Acres: ____

 □ Wetlands adjacent to TNWs: Acres: ____

2. RPWs that flow directly or indirectly into TNWs

 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ____

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ____

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 □ Tributary waters Linear Feet: ____ Width (ft): ____

 □ Other non-wetland waters: Acres: ____

3. Non-RPWs that flow directly or indirectly into TNWs.

 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): ____ Width (feet): ____ Acres: ____

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ____

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ____

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ____

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ____

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

| Feature ID: 110 |

☐ USDA Nat’l Res Conservation Service Soil Survey	**Citation:**
☐ National Wetlands Inventory Maps	**Cite Map Name:**
☐ State/Local Wetland Inventory Maps	
☐ FEMA/FIRM Maps:	
☐ 100-year Floodplain Elevation is:	*(National Geodetic Vertical Datum of 1929)*
☑ Aerial Photographs	*(Name and Date):* Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs	*(Name and Date):* Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations	**File No. and Date of Response Letter:**
☐ Applicable/Supporting Case Law	**Citation:**
☐ Applicable/Supporting Scientific Literature	**Citation:**
☑ Other Information, Please Specify:	

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 111

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
This space is not applicable.

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 20.86087
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - (ii) Physical Characteristics:
 - □ □ Relationship with TNW
 - [] Tributary flows directly to TNW
 - [] Tributary flows through [] tributaries before entering TNW
 - Project waters are [] river miles from TNW
 - [] river miles from TNW
Feature ID: 111

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally -sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: __________________________
- Surface Flow is: __________________________
- Subsurface Flow: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________

Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: __________________________
- Ecological connection Explain: __________________________
- Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:
This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______

☐ Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 ☐ Tributary waters Linear Feet: ______ Width (Ft): ______

 ☐ Other non-wetland waters: Acres: ______

3. Non-RPWS that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 ☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______

 ☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 111

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 111

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>July 5, 2013</td>
</tr>
</tbody>
</table>

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

| Los Angeles District, File No. Pending |

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

<table>
<thead>
<tr>
<th>Drainage Feature 112</th>
</tr>
</thead>
<tbody>
<tr>
<td>State: AZ</td>
</tr>
<tr>
<td>City: N/A</td>
</tr>
</tbody>
</table>

| Name of nearest waterbody: |
| Gila River between Powers Butte and Gillespie Dam |

| Name of watershed or Hydrologic Unit Code (HUC): |
| 15050100 |

- [] Check if map/diagram of review are are available upon request
- [] Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- [] Waters subject to the ebb and flow of the tide.
- [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 - a. Indicate presence of water of U.S. in review area (Check all the apply):
 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands
 - b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 - Wetlands Acres: |
 - c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 - [] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 - Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.07497
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 112

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally-sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: ____________________________ Explain: ____________________________
Surface Flow is: ____________________________ Characteristics: ____________________________
Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________________________
 - Ecological connection Explain: ____________________________
 - Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW: ____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________
Flow is From: ____________________________
Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (Ft).

☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): ___________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: ___________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ___________ Acres: ___________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ___________ width (ft): ___________
☐ Other Non-wetland Waters MBR acres: ___________
☐ Wetlands MBR acres: ___________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 1182.86 linear feet (ft), 7.26 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 112

USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 113

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: [___________]
 - □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland, the tributary is not a TNW.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**

 (i) **General Area Conditions:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.12667</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 - □ Tributary flows directly to TNW
 - ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

- Tributary Provides for: Ephemeral Flow
- Estimate average number of flow events in review area/year: 2-5
- Describe Flow Regime: Ephemeral.
- Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

- Dye (or other) test performed:

- Tributary Has (Check all that apply):
 - Bed and Banks
 - [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community
 - Other (list):
 - [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ___________________________
- Mean High water Mark indicated by: ___________________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ______________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: _______________________________

Habitat for:

- Federally Listed Species Explain findings: _______________________________
- Fish/Spawn Areas Explain findings: _______________________________
- Other environmentally sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: ___________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________________________
 - Ecological connection Explain: ____________________________
 - Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW:

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th></th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributary waters</td>
<td>Linear Feet:</td>
<td>Width (Ft).</td>
</tr>
<tr>
<td>Other non-wetland waters:</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

| Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply): |
|---|---|---|
| Length (Linear Feet): | Width (feet): | Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:	
Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:	
Provide acreage estimates for jurisdictional wetland in the review area:	Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area: | Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 113</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: [National Geodetic Vertical Datum of 1929]</td>
</tr>
<tr>
<td>☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 114

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No navigable waters of the U.S. within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No waters of the U.S. within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02599
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☑ Tributary flows directly to TNW
 ☐ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural
Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined
Subsurface Flow: No
Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
Other (list):
Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects: []
- fine shell or debris deposits (foreshore): []
- physical markings/characteristics: []
- tidal gauges: []
- other: []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally -sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain: []
- Surface Flow is: []

Characteristics:

- Subsurface Flow: Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW: []
- Wetland Not Directly Abutting Non-TNW: []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

	Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:		
	Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:		
	Provide estimates for jurisdictional waters in the review area (check all that apply):		
	Tributary waters	Linear Feet:	Width (Ft):
	Other non-wetland waters:	Acres:	

3. Non-RPWs that flow directly or indirectly into TNWs.

	Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.		
	Provide estimates of jurisdictional waters within the review area (check all that apply):		
	Length (Linear Feet):	Width (feet):	Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

	Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.	
	Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:	
	Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW	
	Provide acreage estimates for jurisdictional wetland in the review area:	Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| | Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. |
| | Provide acreage estimates for jurisdictional wetland in the review area: | Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
114

Feature ID:

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 1342.19 linear feet (ft), 4.15 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 114</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 115
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: [] Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.00117 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 [] Tributary flows directly to TNW
 [] Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW

Project waters are: river Miles from tributary to RPW:	[]
Project waters are: 30 (or more) aerial (straight) miles from tributary to TNW:	[]
Project waters are: aerial (straight) miles from tributary to RPW:	[]
Project waters cross or serve as state boundaries. Explain:	[]
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.	

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):** []
- **Average Depth (ft):** []
- **Average Side Slopes**: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume: []

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed: []

Tributary Has (Check all that apply):

- Bed and Banks
- **OHWM (check all the apply): OHWM Indicators:**
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list): []

Discontinuous? Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:
Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______

- Other Non-wetland Waters MBR acres: ______

- Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [x] Non-wetland waters ______ linear feet (ft), ______ width (ft)

- Other waters ______ acres

- Wetlands ______ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [x] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [x] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- [x] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat'l Res Conservation Service Soil Survey
Citation:

☐ National Wetlands Inventory Maps
Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: __
 (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date):
 Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date):
 Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law
Citation:

☐ Applicable/Supporting Scientific Literature
Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>July 5, 2013</td>
</tr>
</tbody>
</table>

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

| Office: Los Angeles District, File No. Pending |

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 116

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site:</td>
<td>Lat. 32.8482"N</td>
<td>Long. -111.2599"W</td>
</tr>
<tr>
<td>Name of nearest waterbody:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC):</td>
<td>15050100</td>
<td></td>
</tr>
</tbody>
</table>

- Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in review area

Non-Wetlands waters	Linear Feet	Width (ft) and/or Acres
Wetlands Acres:		

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 | Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW. |
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00744
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft): []
- Average Depth (ft): []
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts []
- Sands []
- Concrete []
- Muck []
- Gravel []
- Substrate - Vegetation []
- Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank []
 - Changes in soil character []
 - Shelving []
 - Vegetation matted down, bent or absent []
 - Leaf litter disturbed or washed away []
 - Sediment deposition []
 - Water staining []
 - Presence of litter and debris []
 - Destruction of terrestrial vegetation []
 - Presence of wrack line []
 - Sediment sorting []
 - Scour []
 - Multiple observed or predicted flow events []
 - Abrupt change in plant community []
 - Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other
- Mean High water Mark indicated by:
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species
- Fish/Spawn Areas
- Other environmentally-sensitive species
- Aquatic/Wildlife diversity

Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Surface Flow is:

- Characteristics:
- Subsurface Flow:

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection
- Ecological connection
- Separated by berm/barrier

Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

- Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - [] Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: __________ Width (ft): __________ Acres: __________
 - [] Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ________ Acres: ________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: ________ width (ft): ________
- [] Other Non-wetland Waters MBR acres: ________
- [] Wetlands MBR acres: ________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [✓] Non-wetland waters 281.34 linear feet (ft), 5.45 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [✓] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [✓] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- [] Office Concurs with data sheets/delineation report
- [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
- [] USGS NHD Data
- [] USGS 8 and 12 digit HUC Maps
- [✓] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 116

116

Feature ID: 116

USDA Nat'l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs

(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs

(Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations

File No. and Date of Response Letter:

Applicable/Supporting Case Law

Citation:

Applicable/Supporting Scientific Literature

Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDCTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 Drainage Feature 117
 State: AZ
 County/Parish/borough: Pinal County
 City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Name of watershed or Hydrologic Unit Code (HUC): 15050100

[] Check if map/diagram of review are and/or potential jurisdional areas is/are available upon request
[] Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

[] Office (Desk) Determination. Date:
[] Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There [Are No] "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

[] Waters subject to the ebb and flow of the tide.
[] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There [Are No] "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 [] TNWs (new)
 [] Wetlands adjacent to TNWs
 [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 [] Non-RPWS that flow directly or indirectly into TNWs
 [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 [] Wetlands adjacent to non-RPWS that flow directly or indirectly into TNWs
 [] Impoundments of jurisdional waters
 [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 [] Potentially jurisdional waters and/or wetlands were assessed within the review area and determined not to be jurisdional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01562
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 □ Relationship with TNW

 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are [] river Miles from tributary to RPW:
Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are [] aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: [] Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft): []
Average Depth (ft): []
Average Side Slopes: []

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: []
Stable.

Presence of Run/Riffle/Pool Complexes. Explain: []
Not present.

Tributary Geometry: [] Relatively Straight

Tributary Gradient (approximate average slope): []

(c) Flow:
Tributary Provides for: [] Ephemeral Flow

Estimate average number of flow events in review area/year: []

Describe Flow Regime: [] Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: [] Discrete and Confined Characteristics: []
Subsurface Flow: [] No Explain: []

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
- [] Discontinuous? Explain: []

- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community
(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

<table>
<thead>
<tr>
<th>Explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Identify Specific Pollutants, if known:

<table>
<thead>
<tr>
<th>Explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

(iv) Biological Characteristics. Channel supports (check all that apply):

- □ Riparian Corridor Characteristics:
- □ Wetland Fringe Characteristics:

Habitat for:

- □ Federally Listed Species Explain findings:
- □ Fish/Spawn Areas Explain findings:
- □ Other environmentally-sensitive species Explain findings:
- □ Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

- **(a) General Wetland Characteristics**
 - Properties:
 - Wetland Size (ac):
 - Wetland Type, Explain:
 - Wetland Quality, Explain:

- **(b) General Flow Relationship with Non-TNW**
 - Wetland Flow is: Explain:
 - Surface Flow is:
 - Characteristics:
 - Subsurface Flow: Explain Findings:

- **(c) Wetland Adjacency Determination with Non-TNW**
 - □ Wetland Directly Abutting Non-TNW
 - □ Wetland Not Directly Abutting Non-TNW
 - □ Discrete wetland hydrologic connection Explain:
 - □ Ecological connection Explain:
 - □ Separated by berm/barrier Explain:

- **(d) Proximity (Relationship) to TNW**
 - Project Wetlands: River Miles from TNW:
 - Project Wetlands: Aerial Miles from TNW:
 - Flow is From:
 - Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

 Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. Analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON‐JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non‐Jurisdictional Waters

Provide acreage estimates for non‐jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- □ Non wetland‐Waters (i.e., rivers, streams): linear feet: width (ft):
- □ Other Non‐wetland Waters MBR acres:
- □ Wetlands MBR acres:

Provide acreage estimates for non‐jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- □ Non‐wetland waters linear feet (ft), width (ft)
- □ Other waters acres
- □ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- □ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- □ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report

- □ Data Sheets Prepared by the Corps
- □ Corps Navigable Water Study
- □ US Geological Survey Hydrologic Atlas

- USGS NHD Data
- USGS 8 and 12 digit HUC Maps

- US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles
Feature ID: 117

USDA Nat'l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 118

- **State:** AZ
- **County/Parish/borough:** Pinal
- **City:** N/A

<table>
<thead>
<tr>
<th>Center coordinates of site:</th>
<th>Lat. 32.8482°N</th>
<th>Long. -111.2599°W</th>
</tr>
</thead>
</table>

- **Name of nearest waterbody:**
 Gila River between Powers Butte and Gillespie Dam

- **Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:**
 The Gila River

- **Name of watershed or Hydrologic Unit Code (HUC):** 15050100

- **Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request:** []

- **Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form:** []

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- [] Office (Desk) Determination. Date:
- [] Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

- There [] "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 - [] Waters subject to the ebb and flow of the tide.
 - [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

- There [] "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

 1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 - Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

- [] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain:
 Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.52366
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ☑ Tributary flows through ________ tributaries before entering TNW

 Project waters are ________ (or more) river miles from TNW
Feature ID: 118

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobbles
- Bedrock
- Sands
- Concrete
- Gravel
- Other, Explain: Substrate - Vegetation

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Poll Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characteize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
 - Linear Feet: [] Width (ft): [] TNW Acres []
- [] Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - Linear Feet: [] Width (ft): [] Acres: []
 - [] Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
□ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

□ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
□ Other Non-wetland Waters MBR acres:
□ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft)
☑ Other waters acres
☑ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
□ Office Concurs with data sheets/delineation report
□ Office Does Not Concur with data sheets/delineation report
□ Data Sheets Prepared by the Corps
□ Corps Navigable Water Study
□ US Geological Survey Hydrologic Atlas
□ USGS NHD Data
□ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 118</th>
</tr>
</thead>
</table>

U.S Army Cops of Engineers

- **APPROVED JURISDICTIONAL DETERMINATION FORM**

<table>
<thead>
<tr>
<th>Component</th>
<th>Citation</th>
<th>Cite Map Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td></td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
</tbody>
</table>

Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations
File No. and Date of Response Letter: |

Applicable/Supporting Case Law
Citation: |

Applicable/Supporting Scientific Literature
Citation: |

Other Information, Please Specify: |

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
- July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
- Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
- **Drainage Feature 119**
 - **State:** AZ
 - **County/Parish/borough:** Pinal
 - **City:** N/A
 - Center coordinates of site:
 - Lat.: 32.8482°N
 - Long.: -111.2599°W
 - **Name of nearest waterbody:**
 - Gila River between Powers Butte and Gillespie Dam
 - **Name of watershed or Hydrologic Unit Code (HUC):** 15050100

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
- ☑ Field Determination. Date: 10/2012
- ○ Office (Desk) Determination. Date:

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
- There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
- ○ Waters subject to the ebb and flow of the tide.
- ○ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
- There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - ○ TNWs (new)
 - ○ Wetlands adjacent to TNWs
 - ○ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - ○ Non-RPWs that flow directly or indirectly into TNWs
 - ○ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - ○ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - ○ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - ○ Impoundments of jurisdictional waters
 - ○ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres
 - Wetlands Acres: _______
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 - ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________

☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 i) General Area Conditions:

 Watershed Size (sq mi): ________
 Drainage Area (sq mi): ________
 Average Annual Rainfall (in): ________
 Average Annual Snowfall (in): ________

 ii) Physical Characteristics:

 a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ✓ Tributary flows through ________ tributaries before entering TNW

 Project waters are ________ (or more) river miles from TNW
Feature ID: 119

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
 - Average Width (ft):
 - Average Depth (ft):
 - Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
 - Silts
 - Sands
 - Concrete
 - Gravel
 - Substrate - Vegetation
 - Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: __

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________
- Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________

Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: ____________________________
- Ecological connection Explain: ____________________________
- Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.);

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________
☐ Other Non-wetland Waters MBR acres: __________
☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 2005.83 linear feet, 4.84 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 119</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey</td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photograph Type</th>
<th>Name and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial Photographs</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation</td>
</tr>
</tbody>
</table>

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 12

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain:

Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi):
 Drainage Area (sq mi):
 Average Annual Rainfall (in):
 Average Annual Snowfall (in):
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through
 tributaries before entering TNW
 Project waters are
 river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are river Miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries. Explain:</td>
</tr>
<tr>
<td>Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.</td>
</tr>
</tbody>
</table>

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary properties with respect to top of bank (estimate):</td>
</tr>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
<tr>
<td>Primary tributary substrate composition (check all that apply):</td>
</tr>
<tr>
<td>✓ Silts</td>
</tr>
<tr>
<td>☐ Sands</td>
</tr>
<tr>
<td>☐ Concrete</td>
</tr>
<tr>
<td>☐ Muck</td>
</tr>
<tr>
<td>✓ Gravel</td>
</tr>
<tr>
<td>☐ Substrate - Vegetation</td>
</tr>
<tr>
<td>Other, Explain:</td>
</tr>
<tr>
<td>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.</td>
</tr>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain: Not present.</td>
</tr>
<tr>
<td>Tributary Geometry: Relatively Straight</td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope): 1%</td>
</tr>
</tbody>
</table>

(c) Flow

<table>
<thead>
<tr>
<th>Tributary Provides for: Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate average number of flow events in review area/year: 2-5</td>
</tr>
<tr>
<td>Describe Flow Regime: Ephemeral.</td>
</tr>
<tr>
<td>Other Information on Duration and Volume:</td>
</tr>
<tr>
<td>Surface Flow is: Discrete and Confined Characteristics:</td>
</tr>
<tr>
<td>Subsurface Flow: No Explain:</td>
</tr>
<tr>
<td>☐ Dye (or other) test performed:</td>
</tr>
<tr>
<td>Tributary Has (Check all that apply):</td>
</tr>
<tr>
<td>☐ Bed and Banks</td>
</tr>
<tr>
<td>✓ OHWM (check all the apply): OHWM Indicators:</td>
</tr>
<tr>
<td>✓ Clear, natural line impressed on the bank</td>
</tr>
<tr>
<td>✓ Changes in soil character</td>
</tr>
<tr>
<td>☐ Shelving</td>
</tr>
<tr>
<td>☐ Vegetation matted down, bent or absent</td>
</tr>
<tr>
<td>☐ Leaf litter disturbed or washed away</td>
</tr>
<tr>
<td>☐ Sediment deposition</td>
</tr>
<tr>
<td>☐ Water staining</td>
</tr>
<tr>
<td>Presence of litter and debris</td>
</tr>
<tr>
<td>☐ Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>☐ Presence of wrack line</td>
</tr>
<tr>
<td>☐ Sediment sorting</td>
</tr>
<tr>
<td>☐ Scour</td>
</tr>
<tr>
<td>☐ Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>☐ Abrupt change in plant community</td>
</tr>
<tr>
<td>Other (list):</td>
</tr>
<tr>
<td>☐ Discontinuous? Explain:</td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:
Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW
(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:
Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: Explain:
Surface Flow is:
Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

[] Riparian Buffer Characteristics (type, average width):

[] Vegetation type/percent cover. Explain:

Habitat for:

[] Federally Listed Species Explain:

[] Fish/Spawn Areas Explain:

[] Other environmentally-sensitive species Explain:

[] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft):
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concur with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 12</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat’l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
</tbody>
</table>

- **100-year Floodplain Elevation is:** (National Geodetic Vertical Datum of 1929)
 - Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

<table>
<thead>
<tr>
<th>Previous Determinations File No. and Date of Response Letter:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law Citation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Scientific Literature Citation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other Information, Please Specify:</th>
</tr>
</thead>
</table>

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 120
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There __No__ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There __No__ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ______ Linear Feet ______ Width (ft) and/or ______ Acres
 Wetlands Acres: ______
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________
 □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.01815
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 - □ Tributary flows directly to TNW
 - □ Tributary flows through _______ tributaries before entering TNW
 - Project waters are _______ (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>120</th>
</tr>
</thead>
</table>

Project waters are [] river
Miles from tributary to RPW:

Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are [] aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

[] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous? Explain:

<table>
<thead>
<tr>
<th>Other (list):</th>
</tr>
</thead>
</table>

- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community

- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by:
- [] Mean High water Mark indicated by:
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ____________________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ________________________________
- [] Wetland Fringe Characteristics: ________________________________

Habitat for:

- [] Federally Listed Species Explain findings: __________________________
- [] Fish/Spawn Areas Explain findings: _________________________________
- [] Other environmentally-sensitive species Explain findings: ____________
- [] Aquatic/Wildlife diversity Explain: ________________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ________________________________
- Wetland Type, Explain: ________________________________
- Wetland Quality, Explain: ________________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ________________________________ Explain: ________________

Surface Flow is: ________________________________

Characteristics: ________________________________

Subsurface Flow: ________________________________ Explain Findings: ________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain: ________________________________
- [] Ecological connection Explain: ________________________________
- [] Separated by berm/barrier Explain: ________________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ________________________________

Project Wetlands: Aerial Miles from TNW: ________________________________

Flow is From: ________________________________

Estimate approximate Location of Wetland within Floodplain: ________________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in cumulative analysis:
 Wetland acres in total being considered in cumulative analysis:
 Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:
This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs
 - Linear Feet:
 - Width (ft):
 - TNW Acres
- Wetlands adjacent to TNWs:
 - Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Linear Feet:
 - Width (Ft):
 - Other non-wetland waters:
 - Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area:
 - Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area:
 - Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section IIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams)
☐ Other Non-wetland Waters MBR
☐ Wetlands MBR

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 536.34 linear feet (ft), 4.64 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 120

☐ USDA Nat'l Res Conservation Service Soil Survey
Citation:

☐ National Wetlands Inventory Maps
Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is:
(National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law
Citation:

☐ Applicable/Supporting Scientific Literature
Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 121
State: AZ County/Parish/borough: Pinal City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There ☒ "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There ☒ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01848
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 [] Tributary flows directly to TNW
 [] Tributary flows through [] tributaries before entering TNW
 Project waters are [] river miles from TNW
 30 (or more)
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
☐ Clear, natural line impressed on the bank
☐ Changes in soil character
☐ Shelving
☐ Vegetation matted down, bent or absent
☐ Leaf litter disturbed or washed away
☐ Sediment deposition
☐ Water staining
☐ Presence of litter and debris
☐ Destruction of terrestrial vegetation
☐ Presence of wrack line
☐ Sediment sorting
☐ Scour
☐ Multiple observed or predicted flow events
☐ Abrupt change in plant community

Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ________________________________
- Mean High water Mark indicated by: ________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ________________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: _____________________________
- Wetland Fringe Characteristics: ________________________________

Habitat for:

- Federally Listed Species Explain findings: _______________________
- Fish/Spawn Areas Explain findings: ______________________________
- Other environmentally-sensitive species Explain findings: ___________
- Aquatic/Wildlife diversity Explain: ________________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): ____________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: ________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ______________________

Surface Flow is: ____________________________

Characteristics: __

Subsurface Flow: ____________________________ Explain Findings: ________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ________________________
 - Ecological connection Explain: ______________________________________
 - Separated by berm/barrier Explain: __________________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: __

Estimate approximate Location of Wetland within Floodplain: ________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
- [] Wetlands adjacent to TNWs:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - [] Other non-wetland waters:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): │ Acres: │

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: │ width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [X] Non-wetland waters 271.31 linear feet (ft), 3.62 width (ft) acres
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [X] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [X] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [X] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 122

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
<th>Lat.</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal County</td>
<td>N/A</td>
<td>32.8482°N</td>
<td>-111.2599°W</td>
</tr>
</tbody>
</table>

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting RPW, the jurisdictional wetland is not adjacent if the RPW is non-navigable.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - **(i) General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.02968
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - **(ii) Physical Characteristics:**
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: □
- Oil or scum line along shore objects □
- Fine shell or debris deposits (foreshore) □
- Physical markings/characteristics □
- Tidal gauges □
- Other □

Mean High Water Mark indicated by:

- Survey to available datum □
- Physical markings □
- Vegetation lines/changes in vegetation types □

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc): Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
- [] Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: [] Width (ft): []
 - [] Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): ____________

7. Impoundments of Jurisdictional Waters

Demonstration of Jurisdiction: ____________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: ____________

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
- [] Other Non-wetland Waters MBR acres: ______
- [] Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters 2137.64 linear feet (ft), 4.52 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
FEATURE ID: 122

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date):

Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date):

Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 123

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal County</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Section coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or</th>
<th>Acres</th>
</tr>
</thead>
</table>

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: ___________________________
 - □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, though a significant nexus finding is not required as a matter of law.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.45413
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 - □ Tributary flows directly to TNW
 - ☑ Tributary flows through _______ tributaries before entering TNW
 - Project waters are _______ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
- Clear, natural line impressed on the bank
- Changes in soil character
- Shelving
- Vegetation matted down, bent or absent
- Leaf litter disturbed or washed away
- Sediment deposition
- Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally -sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________ Explain: ____________________________
- Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ____________________________
- Ecological connection Explain: ____________________________
- Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):

- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:

- [] Fish/Spawn Areas Explain:

- [] Other environmentally-sensitive species Explain:

- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: __________ Width (ft): _______ TNW Acres _______
 - Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ______ Width (ft): ______
 - Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 1405.61 linear feet (ft), 7.70 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 123

- USDA Nat'l Res Conservation Service Soil Survey
- National Wetlands Inventory Maps
- State/Local Wetland Inventory Maps
- FEMA/FIRM Maps
- 100-year Floodplain Elevation is: \(\text{[Enter Value]} \) (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012

- Previous Determinations File No. and Date of Response Letter:

- Applicable/Supporting Case Law Citation:

- Applicable/Supporting Scientific Literature Citation:

- Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 124

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc.) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 □ TNWs (new)
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW:
 ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00412
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are 30 (or more) river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are ____________ aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain: ____________
Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [x] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain: ____________
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics: ____________
Subsurface Flow: No Explain: ____________
- [] Dye (or other) test performed: ____________

Tributary Has (Check all that apply):
- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [x] Shelving
 - [x] Vegetation matted down, bent or absent
 - [x] Leaf litter disturbed or washed away
 - [x] Sediment deposition
 - [x] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [x] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community
Other (list): ____________
- [] Discontinuous? Explain: ____________
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Surface Flow is:

Characteristics:

Subsurface Flow:

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 □ TNWs Linear Feet: Width (ft): TNW Acres

 □ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 □ Tributary waters Linear Feet: Width (Ft).

 □ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 371.61 linear feet (ft), 3.87 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 124</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat’l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
</tbody>
</table>

- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012
- Previous Determinations File No. and Date of Response Letter:
- Applicable/Supporting Case Law Citation:
- Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:
- Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature
125

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC):
15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.28894
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 125

U.S Army Corps of Engineers

Project waters are [] river Miles from tributary to RPW:

Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are [] aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation

Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Characteristics:

Subsurface Flow:

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: _______________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

- Mean high water mark indicated by: _______________
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: _______________

Identify specific pollutants, if known: _______________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor characteristics: _______________
- Wetland fringe characteristics: _______________

Habitat for:

- Federally listed species: Explain findings: _______________
- Fish/spawn areas: Explain findings: _______________
- Other environmentally sensitive species: Explain findings: _______________
- Aquatic/wildlife diversity: Explain: _______________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland size (ac): _______________
- Wetland type, explain: _______________
- Wetland quality, explain: _______________

Project wetlands cross or serve as state boundaries, explain: _______________

(b) General Flow Relationship with Non-TNW:

Wetland flow is: _______________ Explain: _______________

Surface flow is: _______________

Characteristics: _______________

Subsurface flow: _______________

Explain Findings: _______________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland directly abutting non-TNW
- Wetland not directly abutting non-TNW
 - Discrete wetland hydrologic connection: Explain: _______________
 - Ecological connection: Explain: _______________
 - Separated by berm/barrier: Explain: _______________

(d) Proximity (Relationship) to TNW:

Project wetlands: river miles from TNW: _______________

Project wetlands: aerial miles from TNW: _______________

Flow is from: _______________

Estimate approximate location of wetland within floodplain: _______________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNW where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributary waters</td>
<td>Linear Feet:</td>
<td>Width (Ft).</td>
</tr>
<tr>
<td>Other non-wetland waters:</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (Linear Feet):</td>
<td>Width (feet):</td>
<td>Acres:</td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abutting an RPW and thus are jurisdictional as adjacent wetlands.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 125

- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): ____________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: ____________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: ____________

Length (linear feet): ________ Acres: ________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters ____________

Explain finding of no Significant Nexus: See Section III C 2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: ________ width (ft): ________
- Other Non-wetland Waters MBR acres: ________
- Wetlands MBR acres: ________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 951.75 linear feet (ft), 11.13 width (ft) ________ acres
- Other waters ________ acres
- Wetlands ________ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 125

- USDA Nat’l Res Conservation Service Soil Survey
- National Wetlands Inventory Maps
- FEMA/FIRM Maps:
- State/Local Wetland Inventory Maps
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
- Previous Determinations
- Previous Determinations File No. and Date of Response Letter:
- Applicable/Supporting Case Law Citation:
- Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 126

- **State:** AZ
- **County/Parish/borough:** Pinal County
- **City:** N/A

- **Center coordinates of site:** Lat. 32.8482°N, Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

- **Name of watershed or Hydrologic Unit Code (HUC):** 15050100

Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. **RHA SECTION 10 DETERMINATION OF JURISDICTION**

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- **☐** Waters subject to the ebb and flow of the tide.
- **☐** Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. **CWA SECTION 404 DETERMINATION OF JURISDICTION**

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. **Waters of the U.S.**

 a. **Indicate presence of water of U.S. in review area (Check all the apply):**

 - **☐** TNWs (new)
 - **☐** Wetlands adjacent to TNWs
 - **☐** Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - **☐** Non-RPWs that flow directly or indirectly into TNWs
 - **☐** Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - **☐** Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - **☐** Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - **☐** Impoundments of jurisdictional waters
 - **☐** Isolated (interstate or intrastate) waters, including isolated wetlands

 b. **Identify (estimate) size of waters of the U.S. in review area**

 - **Non-Wetlands waters** Linear Feet
 - **Width (ft) and/or** Acres
 - **Wetlands Acres:**

 c. **Limits (boundaries) of Jurisdiction based on:**

2. **Non-Regulated Waters/Wetlands (check if applicable):**

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01728
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through ______ tributaries before entering TNW
 Project waters are ______ river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:] Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ____________________________
 - [] oil or scum line along shore objects
 - [] fine shell or debris deposits (foreshore)
 - [] physical markings/characteristics
 - [] tidal gauges
 - [] other

- [] Mean High water Mark indicated by: ____________________________
 - [] survey to available datum
 - [] physical markings
 - [] vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: __

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: __
- [] Wetland Fringe Characteristics: ___

Habitat for:

- [] Federally Listed Species Explain findings: __
- [] Fish/Spawn Areas Explain findings: ___
- [] Other environmentally -sensitive species Explain findings: __
- [] Aquatic/Wildlife diversity Explain: ___

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________
- Wetland Type, Explain: __
- Wetland Quality, Explain: __

Project Wetlands Cross or Serve as State Boundaries, Explain: __

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __

Explain: __

Surface Flow is: __

Characteristics: __

Subsurface Flow: __

Explain Findings: __

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW
 - [] Discrete wetland hydrologic connection Explain: __
 - [] Ecological connection Explain: __
 - [] Separated by berm/barrier Explain: __

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________

Project Wetlands: Aerial Miles from TNW: __________

Flow is From: __

Estimate approximate Location of Wetland within Floodplain: __
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:

Habitat for:

- □ Federally Listed Species Explain:
- □ Fish/Spawn Areas Explain:
- □ Other environmentally-sensitive species Explain:
- □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
 - Linear Feet: __________ Width (ft): __________ TNW Acres __________

- [] Wetlands adjacent to TNWs
 - Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - [] Tributary waters
 - Linear Feet: __________ Width (Ft): __________

 - [] Other non-wetland waters
 - Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at Section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 126</th>
</tr>
</thead>
</table>

- **USDA Nat’l Res Conservation Service Soil Survey**
- **Citation:**
- **National Wetlands Inventory Maps**
- **Cite Map Name:**
- **State/Local Wetland Inventory Maps**
- **FEMA/FIRM Maps:**
- **100-year Floodplain Elevation is:** *(National Geodetic Vertical Datum of 1929)*
- **Aerial Photographs**
 - **(Name and Date):** Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs**
 - **(Name and Date):** Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations**
 - **File No. and Date of Response Letter:**
- **Applicable/Supporting Case Law**
 - **Citation:**
- **Applicable/Supporting Scientific Literature**
 - **Citation:**
 - **Other Information, Please Specify:**

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 127
State: AZ
County/Parish/borough: Pinal
Center coordinates of site: Lat. 32.8482"N Long. -111.2599"W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all that apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.13396
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>river Miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries.</td>
<td>Explain:</td>
</tr>
<tr>
<td>Identify flow route to TNW</td>
<td>Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.</td>
</tr>
<tr>
<td>(b) General Tributary Characteristics</td>
<td></td>
</tr>
<tr>
<td>Tributary is</td>
<td>Natural</td>
</tr>
<tr>
<td>Tributary properties with respect to top of bank (estimate):</td>
<td></td>
</tr>
<tr>
<td>Average Width (ft):</td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft):</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
</tr>
<tr>
<td>Primary tributary substrate composition (check all that apply):</td>
<td></td>
</tr>
<tr>
<td>Silts</td>
<td>☑</td>
</tr>
<tr>
<td>Sands</td>
<td>☐</td>
</tr>
<tr>
<td>Concrete</td>
<td>☐</td>
</tr>
<tr>
<td>Muck</td>
<td>☐</td>
</tr>
<tr>
<td>Cobbles</td>
<td>☐</td>
</tr>
<tr>
<td>Gravel</td>
<td>☑</td>
</tr>
<tr>
<td>Substrate - Vegetation</td>
<td>☑</td>
</tr>
<tr>
<td>Other, Explain:</td>
<td></td>
</tr>
<tr>
<td>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:</td>
<td>Stable.</td>
</tr>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain:</td>
<td>Not present.</td>
</tr>
<tr>
<td>Tributary Geometry:</td>
<td>Relatively Straight</td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope):</td>
<td>1%</td>
</tr>
<tr>
<td>(c) Flow:</td>
<td></td>
</tr>
<tr>
<td>Tributary Provides for:</td>
<td>Ephemeral Flow</td>
</tr>
<tr>
<td>Estimate average number of flow events in review area/year:</td>
<td>2-5</td>
</tr>
<tr>
<td>Describe Flow Regime:</td>
<td>Ephemeral.</td>
</tr>
<tr>
<td>Other Information on Duration and Volume:</td>
<td></td>
</tr>
<tr>
<td>Surface Flow is:</td>
<td>Discrete and Confined</td>
</tr>
<tr>
<td>Subsurface Flow:</td>
<td>No</td>
</tr>
<tr>
<td>Dye (or other) test performed:</td>
<td></td>
</tr>
<tr>
<td>Tributary Has (Check all that apply):</td>
<td></td>
</tr>
<tr>
<td>Bed and Banks</td>
<td></td>
</tr>
<tr>
<td>OHWM (check all the apply): OHWM Indicators:</td>
<td></td>
</tr>
<tr>
<td>Clear, natural line impressed on the bank</td>
<td>☑</td>
</tr>
<tr>
<td>Changes in soil character</td>
<td>☑</td>
</tr>
<tr>
<td>Shelving</td>
<td></td>
</tr>
<tr>
<td>Vegetation matted down, bent or absent</td>
<td></td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
<td></td>
</tr>
<tr>
<td>Sediment deposition</td>
<td></td>
</tr>
<tr>
<td>Water staining</td>
<td></td>
</tr>
<tr>
<td>Other (list):</td>
<td></td>
</tr>
<tr>
<td>Discontinuous?</td>
<td>Explain:</td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally-sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: __________________________ Explain: __________________________
- Surface Flow is: __________________________

Characteristics: __________________________ Explain Findings: __________________________

Subsurface Flow: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________________________
 - Ecological connection Explain: __________________________
 - Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: __________________________
- Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 127

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [x] Non-wetland waters linear feet (ft), width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [x] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [x] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [x] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 127</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED JURISDICTIONAL DETERMINATION FORM</td>
</tr>
<tr>
<td>U.S Army Cops of Engineers</td>
</tr>
<tr>
<td>□ USDA Nat'l Res Conservation Service Soil Survey</td>
</tr>
<tr>
<td>□ National Wetlands Inventory Maps</td>
</tr>
<tr>
<td>□ State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>□ FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>□ 100-year Floodplain Elevation is:</td>
</tr>
<tr>
<td>✓ Aerial Photographs</td>
</tr>
<tr>
<td>✓ Other Photographs</td>
</tr>
<tr>
<td>□ Previous Determinations</td>
</tr>
<tr>
<td>□ Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>□ Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) | July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER | Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: | Drainage Feature 128
State: AZ | County/Parish/borough: Pinal County
City: N/A | Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:

☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________
 □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01570
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

General Tributary Characteristics

Tributary is: Natural

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain: Stable.

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:

Other (list):

[] Other Information:

[] Other (list):

[] Other Information:

[] Other (list):

[] Other Information:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: ____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __

Identify Specific Pollutants, if known: ______________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ______________________
- Wetland Fringe Characteristics: _________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally sensitive species Explain findings: ______
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________________________
- Wetland Type, Explain: _________________________
- Wetland Quality, Explain: _______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________
Surface Flow is: ___________________________
- Characteristics: ___________________________
Subsurface Flow: ___________________________
Explain Findings: _________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: _______________________
- Ecological connection Explain: ______________________
- Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________
Project Wetlands: Aerial Miles from TNW: _________________________
Flow is From: __________________________
Estimate approximate Location of Wetland within Floodplain: ______________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres:

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 ☐ Tributary waters Linear Feet: Width (Ft).

 ☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 ☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 ☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 1043.60 linear feet (ft), 5.14 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Cops of Engineers

<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>128</th>
</tr>
</thead>
</table>

- **USDA Nat’l Res Conservation Service Soil Survey**: Citation: []
- **National Wetlands Inventory Maps**: Cite Map Name: []
- **State/Local Wetland Inventory Maps**: []
- **FEMA/FIRM Maps**: []
- **100-year Floodplain Elevation is**: [] (National Geodetic Vertical Datum of 1929)
- **Aerial Photographs**: (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs**: (Name and Date): Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations File No. and Date of Response Letter**: []
- **Applicable/Supporting Case Law Citation**: []
- **Applicable/Supporting Scientific Literature Citation**: []
- **Other Information, Please Specify**: []

Additional Comments to Support JD:

- []
- []
- []
- []
- []
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 129

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: __________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00851
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✅ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

Feature ID: 129

Project waters are [] river Miles from tributary to RPW:

Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are [] aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- [] Bedrock
- [] Other, Explain: ______________________

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

- Tributary Provides for: Ephemeral Flow
- Estimate average number of flow events in review area/year: 2-5
- Describe Flow Regime: Ephemeral.
- Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Other (list):
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

- [] Discontinuous? Explain: ______________________
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:
Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
 - Characteristics:
 - Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPWM that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: Width (ft): TNW Acres
 - [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (ft):
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 328.78 linear feet, 3.72 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 129</th>
</tr>
</thead>
</table>

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>USDA Nat'l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerial Photographs</th>
<th>(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other Photographs</th>
<th>(Name and Date): Ground Photos; June through July 2012, September through October 2012</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law Citation:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Scientific Literature Citation:</th>
<th></th>
</tr>
</thead>
</table>

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 13

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest waterbody:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC): 15050100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters ___________ Linear Feet ___________ Width (ft) and/or ___________ Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 ☑ Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW:
 [] Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.16963
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

(ii) Physical Characteristics:

 (a) Relationship with TNW

 [] Tributary flows directly to TNW
 [X] Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 13
U.S. Army Corps of Engineers

<table>
<thead>
<tr>
<th>Project waters are (river) Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are (aerial (straight)) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are (aerial (straight)) miles from tributary to RPW:</td>
</tr>
</tbody>
</table>

Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft): []
- Average Depth (ft): []
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Poll Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

- [] Dye (or other) test performed: []

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list): []
- [] Discontinuous? Explain: []

- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community

Project waters are: 30 (or more)
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species
- Fish/Spawn Areas
- Other environmentally sensitive species
- Aquatic/Wildlife diversity

Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________
Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________
Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection
 - Ecological connection
 - Separated by berm/barrier

Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________
Flow is From:

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):
☐ Vegetation type/percent cover. Explain:
Habitat for:
☐ Federally Listed Species Explain:
☐ Fish/Spawn Areas Explain:
☐ Other environmentally-sensitive species Explain:
☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:
This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: Width (ft): TNW Acres
 - [] Wetlands adjacent to TNWs: Acres:

2. **RPWs that flow directly or indirectly into TNWs**
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (Ft).
 - [] Other non-wetland waters: Acres:

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☒ Non-wetland waters 839.53 linear feet (ft), 4.31 width (ft)
☒ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☒ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
13

Feature ID:

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 130

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC):
15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 8.40256
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**
 - □ Tributary flows directly to TNW
 - □ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river
Project waters are 30 (or more)
Project waters are aerial (straight)
Project waters cross or serve as state boundaries.

Identify flow route to TNW

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for:
Ephemeral Flow

Estimate average number of flow events in review area/year:
2-5

Describe Flow Regime:
Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
Discrete and Confined

Subsurface Flow:
No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Other (list):

Discontinuous? Explain:
(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
 - Federally Listed Species: Explain findings: __________________________
 - Fish/Spawn Areas: Explain findings: __________________________
 - Other environmentally-sensitive species: Explain findings: __________________________
 - Aquatic/Wildlife diversity: Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
 - Wetland Size (ac): __________________________
 - Wetland Type, Explain: __________________________
 - Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________

Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________

Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection: Explain: __________________________
 - Ecological connection: Explain: __________________________
 - Separated by berm/barrier: Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (Ft).

☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at Section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Provide estimates for jurisdictional wetland in the review area (in acres):

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 130</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td>[]</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>[]</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td>[]</td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td>[]</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)</td>
<td>[]</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date):</td>
<td>[]</td>
</tr>
<tr>
<td>Other Photographs (Name and Date):</td>
<td>[]</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td>[]</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td>[]</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td>[]</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td>[]</td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:

- []
- []
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 131

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

1. Limits (boundaries) of Jurisdiction based on:

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.06103
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

Feature ID: 131

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
 Average Width (ft):
 Average Depth (ft):
 Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
 - Silts
 - Sands
 - Concrete
 - Muck
 - Gravel
 - Substrate - Vegetation
 Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:

Tributary Has (Check all that apply):
 - Bed and Banks
 - OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 Other (list):
 - Discontinuous? Explain:
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally-sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: []
Surface Flow is: []

Characteristics: []
Subsurface Flow: []
Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
 - Discrete wetland hydrologic connection Explain: []
 - Ecological connection Explain: []
 - Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []
- Flow is From: []
- Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: Width (ft): TNW Acres
- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - [] Tributary waters Linear Feet: Width (ft):
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:
Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 131

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ______________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 132

State: AZ
County/Parish/ borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1 only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.25227
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 132

U.S Army Corps of Engineers

- Project waters are river Miles from tributary to RPW:
- Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
- Project waters are aerial (straight) miles from tributary to RPW:
- Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):
- Silts
- Cobbles
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- ☐ High tide line indicated by: blank
- ☐ Oil or scum line along shore objects: blank
- ☐ Fine shell or debris deposits (foreshore): blank
- ☐ Physical markings/characteristics: blank
- ☐ Tidal gauges: blank
- ☐ Other: blank

☐ Mean High water Mark indicated by: blank
☐ Survey to available datum: blank
☐ Physical markings: blank
☐ Vegetation lines/changes in vegetation types: blank

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: blank

Identify Specific Pollutants, if known: blank

(iv) Biological Characteristics. Channel supports (check all that apply):

☐ Riparian Corridor Characteristics: blank
☐ Wetland Fringe Characteristics: blank

Habitat for:

☐ Federally Listed Species Explain findings: blank
☐ Fish/Spawn Areas Explain findings: blank
☐ Other environmentally -sensitive species Explain findings: blank
☐ Aquatic/Wildlife diversity Explain: blank

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): blank
- Wetland Type, Explain: blank
- Wetland Quality, Explain: blank

Project Wetlands Cross or Serve as State Boundaries, Explain: blank

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: blank
- Surface Flow is: blank

- Characteristics: blank

Subsurface Flow: blank

Explain Findings: blank

(c) Wetland Adjacency Determination with Non-TNW:

☐ Wetland Directly Abutting Non-TNW
☐ Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: blank
- Ecological connection Explain: blank
- Separated by berm/barrier Explain: blank

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: blank
Project Wetlands: Aerial Miles from TNW: blank

Flow is From: blank

Estimate approximate Location of Wetland within Floodplain: blank
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review are (check all that apply):

<table>
<thead>
<tr>
<th></th>
<th>Tributary waters</th>
<th>Linear Feet:</th>
<th>Width (Ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Other non-wetland waters:</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th></th>
<th>Length (Linear Feet):</th>
<th>Width (feet):</th>
<th>Acres:</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: | Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: | Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 132</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED JURISDICTIONAL DETERMINATION FORM</td>
</tr>
<tr>
<td>U.S Army Cops of Engineers</td>
</tr>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date):</td>
</tr>
<tr>
<td>Other Photographs (Name and Date):</td>
</tr>
<tr>
<td>Previous Determinations</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
</tr>
</tbody>
</table>
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 133

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination Date:

☑ Field Determination Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)

 ☐ Wetlands adjacent to TNWs

 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

 ☐ Non-RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

 ☐ Impoundments of jurisdictional waters

 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: __________
 - □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00375
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 □ Tributary flows directly to TNW
 - Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Feature ID: 133

U.S. Army Corps of Engineers

Project waters are ______ river Miles from tributary to RPW:
Project waters are ______ 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are ______ 30 (or more) aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [x] OHWM (check all that apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [x] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
- Other (list):

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other

- Mean High water Mark indicated by:
 - survey to available datum
 - physical markings
 - vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species
- Fish/Spawn Areas
- Other environmentally-sensitive species
- Aquatic/Wildlife diversity

Explain findings:

Other environmentally-sensitive species Explain:

Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Surface Flow is:

Characteristics:

Subsurface Flow:

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection
- Ecological connection
- Separated by berm/barrier

Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: ____ Width (ft): ____ TNW Acres ____

☐ Wetlands adjacent to TNWs: Acres: ____

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 ☐ Tributary waters Linear Feet: ____ Width (ft).

 ☐ Other non-wetland waters: Acres: ____

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): ____ Width (feet): ____ Acres: ____

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 ☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 ☐ Wetlands directly abutting an RPW where tributaries typically flow "seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ____

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ____

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters ______

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 667.64 linear feet (ft), 3.77 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 133</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 134

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: ____________
 - □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.02611
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**
 - □ Tributary flows directly to TNW
 - ✔ Tributary flows through __4__ tributaries before entering TNW
 - Project waters are __30 (or more)__ river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

Mean High water Mark indicated by: []

- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
Wetland Size (ac): []
Wetland Type, Explain: []
Wetland Quality, Explain: []
Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: []
Explain: []
Surface Flow is: []
Characteristics: []
Subsurface Flow: []
Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
 - Discrete wetland hydrologic connection Explain: []
 - Ecological connection Explain: []
 - Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []
Project Wetlands: Aerial Miles from TNW: []
Flow is From: []
Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of dowgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
 - Linear Feet: __________ Width (ft): __________ TNW Acres __________
- [] Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - [] Tributary waters
 - Linear Feet: __________ Width (ft): __________
 - [] Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 134

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 134</th>
</tr>
</thead>
</table>

| USDA Nat’l Res Conservation Service Soil Survey | Citation: |
| National Wetlands Inventory Maps | Cite Map Name: |
| State/Local Wetland Inventory Maps |
| FEMA/FIRM Maps: |

- **100-year Floodplain Elevation is:** \(\text{(National Geodetic Vertical Datum of 1929)} \)
- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012

| Previous Determinations | File No. and Date of Response Letter: |

| Applicable/Supporting Case Law | Citation: |
| Applicable/Supporting Scientific Literature | Citation: |

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 135
State: AZ County/Parish/borough: Pinal County City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No navigable waters of the U.S. within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No waters of the U.S. within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters [] Linear Feet [] Width (ft) and/or [] Acres
 Wetlands Acres: []

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW

 Identify TNW:

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.00347 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Explain:

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation

Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks]. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

- □ Dye (or other) test performed:

Tributary Has (Check all that apply):

- □ Bed and Banks
- □ OHWM (check all the apply): OHWM Indicators:
 - □ Clear, natural line impressed on the bank
 - □ Changes in soil character
 - □ Shelving
 - □ Vegetation matted down, bent or absent
 - □ Leaf litter disturbed or washed away
 - □ Sediment deposition
 - □ Water staining

 Other (list):

- □ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

[] High tide line indicated by: [] Mean High water Mark indicated by:

[] oil or scum line along shore objects [] survey to available datum
[] fine shell or debris deposits (foreshore) [] physical markings
[] tidal gauges [] vegetation lines/changes in vegetation types
[] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

[] Riparian Corridor Characteristics:
[] Wetland Fringe Characteristics:

Habitat for:

[] Federally Listed Species Explain findings:

[] Fish/Spawn Areas Explain findings:

[] Other environmentally-sensitive species Explain findings:

[] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac):

Wetland Type, Explain:

Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

[] Wetland Directly Abutting Non-TNW

[] Wetland Not Directly Abutting Non-TNW

[] Discrete wetland hydrologic connection Explain:

[] Ecological connection Explain:

[] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain __

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width): ___________________________

☐ Vegetation type/percent cover. Explain: ____________________________

Habitat for:

☐ Federally Listed Species Explain: ____________________________

☐ Fish/Spawn Areas Explain: ____________________________

☐ Other environmentally-sensitive species Explain: ____________________________

☐ Aquatic/Wildlife Diversity Explain: ____________________________

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis: ____________________________

Wetland acres in total being considered in cumulative analysis: ____________________________

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 350.62 linear feet (ft), 3.67 width (ft)

☐ Other waters _______ acres

☐ Wetlands _______ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 135

☐ USDA Nat’l Res Conservation Service Soil Survey
Citation:

☐ National Wetlands Inventory Maps
Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 136

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drains is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts a RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.12572
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☑ Tributary flows directly to TNW
 [] Tributary flows through [] tributaries before entering TNW
 Project waters are [30 (or more)] river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [x] Concrete
- [] Muck
- [] Cobbles
- [x] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:
Subsurface Flow: No
Explain:

[] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [x] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [x] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list):

[] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

- Mean High water Mark indicated by: ______________________
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally-sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________ Explain: ____________________________
- Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Not Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ____________________________
- Ecological connection Explain: ____________________________
- Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 -TNWs
 -Linear Feet: ___________________________ Width (ft): ___________________________ TNW Acres
 -Wetlands adjacent to TNWs: Acres: ___________________________

2. RPWs that flow directly or indirectly into TNWs
 -Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 -Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 -Provide estimates for jurisdictional waters in the review area (check all that apply):
 -Tributary waters
 -Linear Feet: ___________________________ Width (Ft): ___________________________
 -Other non-wetland waters:
 -Acres: ___________________________

3. Non-RPWs that flow directly or indirectly into TNWs.
 -Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 -Provide estimates of jurisdictional waters within the review area (check all that apply):
 -Length (Linear Feet): ___________________________ Width (feet): ___________________________ Acres: ___________________________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 -Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 -Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 -Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________________________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 -Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 -Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________________________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): length: __________ width (ft): __________
☐ Other Non-wetland Waters MBR acres: __________
☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 556.25 linear feet (ft), 4.87 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concors with data sheets/delineation report
 ☐ Office Does Not Concor with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: _________________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 137
 State: AZ County/Parish/borough: Pinal City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.07861
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

 Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Selection</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **RPWs that flow directly or indirectly into TNWs**

<table>
<thead>
<tr>
<th>Selection</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: Linear Feet: Width (ft).
- Other non-wetland waters: Acres:

3. **Non-RPWs that flow directly or indirectly into TNWs.**

<table>
<thead>
<tr>
<th>Selection</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide estimates of jurisdictional waters within the review area (check all that apply):

| Length (Linear Feet): Width (feet): Acres: |
|----------------------|----------------------|-------|

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

<table>
<thead>
<tr>
<th>Selection</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abutting an RPW and thus are jurisdictional as adjacent wetlands.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

<table>
<thead>
<tr>
<th>Selection</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
- [] Other Non-wetland Waters MBR acres: []
- [] Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters 623.40 linear feet (ft), 5.50 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Consents with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 137

USDA Nat'l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 138
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W
Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ___________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.01418</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW

☑ Tributary flows through [] tributaries before entering TNW

Project waters are [30 (or more)] river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
- Presence of litter and debris
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community
- Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: __________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________ Explain: ____________________________
- Surface Flow is: ____________________________

Characters: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: ____________________________

Ecological connection Explain: ____________________________

Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet</th>
<th>Width (Ft)</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary waters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet)</th>
<th>Width (feet)</th>
<th>Acres</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
- Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): _______ linear feet : _______ width (ft): _______
☐ Other Non-wetland Waters MBR _______ acres: _______
☐ Wetlands MBR _______ acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 570.41 linear feet (ft), 5.48 width (ft)
☐ Other waters _______ acres
☐ Wetlands _______ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 139

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site: Lat. 32.8482°N</td>
<td>Long. -111.2599°W</td>
<td></td>
</tr>
<tr>
<td>Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC): 15050100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres
 Wetlands Acres: _______
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: []
 [] Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.82725
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 [] Tributary flows directly to TNW
 [] Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- ☑ Silts
- ☐ Sands
- ☐ Concrete
- ☐ Muck
- ☑ Cobbles
- ☐ Gravel
- ☑ Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks
- ☑ OHWM (check all the apply): OHWM Indicators:
 - ☑ Clear, natural line impressed on the bank
 - ☑ Changes in soil character
 - ☑ Shelving
 - ☑ Vegetation matted down, bent or absent
 - ☑ Leaf litter disturbed or washed away
 - ☑ Sediment deposition
 - ☑ Water staining
 - Other (list):
 - ☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally-sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________

Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________ Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: __________________________

Ecological connection Explain: __________________________

Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 □ TNWs Linear Feet: Width (ft): TNW Acres
 □ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 □ Tributary waters Linear Feet: Width (Ft).
 □ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________________________
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): _______ linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR _______ acres: _______
☐ Wetlands MBR _______ acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters _______ 1928.80 linear feet (ft), _______ 9.84 width (ft)
☐ Other waters _______ acres
☐ Wetlands _______ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 139

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 - July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 - Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 14
 - State: AZ, County/Parish/borough: Pinal County
 - City: N/A
 - Center coordinates of site: Lat. 32.8482°N, Long. -111.2599°W
 - Name of nearest waterbody:
 - Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 - Name of watershed or Hydrologic Unit Code (HUC): 15050100

 - Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 - Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 - Office (Desk) Determination. Date:
 - Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 - There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 - Waters subject to the ebb and flow of the tide.
 - Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 - There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters __________ Linear Feet __________ Width (ft) and/or __________ Acres
 - Wetlands Acres: __________
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

<table>
<thead>
<tr>
<th>Identify TNW:</th>
<th>□ Vegetation</th>
</tr>
</thead>
</table>

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.20101 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Approved Jurisdictional Determination Form
U.S. Army Corps of Engineers

Feature ID: 14

Project waters are river Miles from tributary to RPW:
Project waters are (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Bedrock
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species: []
- Fish/Spawn Areas: []
- Other environmentally-sensitive species: []
- Aquatic/Wildlife diversity: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type: []
- Wetland Quality: []

Project Wetlands Cross or Serve as State Boundaries: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: []
- Surface Flow is: []
- Subsurface Flow: []

(c) Wetland Adjacency Determination with Non-TNW:

- Directly Abutting Non-TNW: []
- Not Directly Abutting Non-TNW: []

- Discrete wetland hydrologic connection: []
- Ecological connection: []
- Separated by berm/barrier: []

(d) Proximity (Relationship) to TNW:

- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []
- Flow is From: []
- Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (Ft).

☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ___ Acres: ___

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters ___

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ___ width (ft): ___
☐ Other Non-wetland Waters MBR acres: ___
☐ Wetlands MBR acres: ___

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 1390.17 linear feet (ft), 3.77 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature</th>
<th>Jurisdictional Determination Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey</td>
<td>Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetlands Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs</td>
<td>(Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law</td>
<td>Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 140

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: [Blank]
 - Vegetation: [Blank]
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.01034
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - (ii) Physical Characteristics:
 - [Blank] Tributary flows directly to TNW
 - [Blank] Tributary flows through [Blank] tributaries before entering TNW
 - Project waters are [Blank] river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Gravel
- Substrate - Vegetation
- Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:
Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
Other (list):
Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

- Mean High Water Mark indicated by:
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - [] TNWs
 - Linear Feet: [] Width (ft): [] TNW Acres: []
 - [] Wetlands adjacent to TNWs: Acres: []

2. **RPWs that flow directly or indirectly into TNWs**

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - Linear Feet: [] Width (ft): [] Acres: []
 - [] Other non-wetland waters: Acres: []

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abuttine and RPW: []
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON‐JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters _______ linear feet (ft), 715.86 width (ft) 4.72

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles
Feature ID: 140

USDA Nat’l Res Conservation Service Soil Survey
Citation: ____________________________

National Wetlands Inventory Maps
Cite Map Name: ____________________________

State/Local Wetland Inventory Maps

FEMA/FIRM Maps: ____________________________

100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter: ____________________________

Applicable/Supporting Case Law Citation: ____________________________

Applicable/Supporting Scientific Literature Citation: ____________________________

Other Information, Please Specify: ____________________________

Additional Comments to Support JD: ____________________________
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 141

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Pending

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination.
Date:

☑ Field Determination.
Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There ☐ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00417
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☑ Tributary flows directly to TNW
 ☐ Tributary flows through ___ tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 141

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW: __________
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW: __________
Project waters are aerial (straight) miles from tributary to RPW: __________
Project waters cross or serve as state boundaries. Explain: __________

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
<th>__________</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):** __________
- **Average Depth (ft):** __________
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain: __________

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: __________

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

[] Dye (or other) test performed: __________

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

[] Discontinuous? Explain: __________
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor: Characteristics: ____________________________
- Wetland Fringe: Characteristics: ____________________________

Habitat for:

- Federally Listed Species: Explain findings: ____________________________
- Fish/Spawn Areas: Explain findings: ____________________________
- Other environmentally sensitive species: Explain findings: ____________________________
- Aquatic/Wildlife diversity: Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain: ____________________________
- Surface Flow is: ____________________________

Characteristics:

Subsurface Flow: ____________________________

Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection: Explain: ____________________________
 - Ecological connection: Explain: ____________________________
 - Separated by berm/barrier: Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - [] TNWs
 - [] Wetlands adjacent to TNWs

 Linear Feet: Width (ft): TNW Acres

2. **RPWs that flow directly or indirectly into TNWs**
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - [] Other non-wetland waters

 Linear Feet: Width (ft): Acres

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - [] Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report

- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 141

USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 142

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04308
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary properties with respect to top of bank (estimate):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Width (ft):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
<td></td>
</tr>
<tr>
<td>Primary tributary substrate composition (check all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silts</td>
<td>☑</td>
<td>Sands</td>
</tr>
<tr>
<td>Cobbles</td>
<td>☐</td>
<td>Gravel</td>
</tr>
<tr>
<td>Bedrock</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:</td>
<td>Stable.</td>
<td></td>
</tr>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain:</td>
<td>Not present.</td>
<td></td>
</tr>
<tr>
<td>Tributary Geometry:</td>
<td>Relatively Straight</td>
<td></td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope):</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

(c) Flow

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate average number of flow events in review area/year:</td>
<td>2-5</td>
</tr>
<tr>
<td>Describe Flow Regime:</td>
<td>Ephemeral.</td>
</tr>
<tr>
<td>Other Information on Duration and Volume:</td>
<td></td>
</tr>
<tr>
<td>Surface Flow is:</td>
<td>Discrete and Confined</td>
</tr>
<tr>
<td>Subsurface Flow:</td>
<td>No</td>
</tr>
<tr>
<td>Dye (or other) test performed:</td>
<td></td>
</tr>
<tr>
<td>Tributary Has (Check all that apply):</td>
<td></td>
</tr>
<tr>
<td>☑ Bed and Banks</td>
<td></td>
</tr>
<tr>
<td>☑ OHWM (check all the apply): OHWM Indicators:</td>
<td></td>
</tr>
<tr>
<td>Clear, natural line impressed on the bank</td>
<td></td>
</tr>
<tr>
<td>Changes in soil character</td>
<td></td>
</tr>
<tr>
<td>Shelving</td>
<td></td>
</tr>
<tr>
<td>Vegetation matted down, bent or absent</td>
<td></td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
<td></td>
</tr>
<tr>
<td>Sediment deposition</td>
<td></td>
</tr>
<tr>
<td>Water staining</td>
<td></td>
</tr>
<tr>
<td>Other (list):</td>
<td></td>
</tr>
<tr>
<td>☐ Discontinuous?</td>
<td>Explain:</td>
</tr>
</tbody>
</table>
(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

[] Riparian Corridor Characteristics: []

[] Wetland Fringe Characteristics: []

Habitat for:

[] Federally Listed Species Explain findings:

[] Fish/Spawn Areas Explain findings:

[] Other environmentally-sensitive species Explain findings:

[] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac):

Wetland Type, Explain:

Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

[] Wetland Directly Abutting Non-TNW

[] Wetland Not Directly Abutting Non-TNW

[] Discrete wetland hydrologic connection Explain:

[] Ecological connection Explain:

[] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Wetland Type</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
</tr>
<tr>
<td>Tributary waters</td>
</tr>
<tr>
<td>Other non-wetland waters:</td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

| Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. |
| Provide estimates of jurisdictional waters within the review area (check all that apply): |
| Length (Linear Feet): | Width (ft): | Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

| Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. |
| Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: |
| Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW |
| Provide acreage estimates for jurisdictional wetland in the review area: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. |
| Provide acreage estimates for jurisdictional wetland in the review area: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): ________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: ________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: ________

Length (linear feet): ________ Acres: ________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters ________

Explain finding of no Significant Nexus: See Section III.C. ________

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ________ width (ft): ________
☐ Other Non-wetland Waters MBR acres: ________
☐ Wetlands MBR acres: ________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 568.07 linear feet (ft), 4.35 width (ft)
☐ Other waters ________ acres
☐ Wetlands ________ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 142

U.S Army Corps of Engineers

☐ USDA Nat'l Res Conservation Service Soil Survey
Citation:

☐ National Wetlands Inventory Maps
Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ___________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Addition Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 143
 State: AZ City: N/A
 County/Parish/borough: Pinal Lat. 32.8482°N
 Center coordinates of site: Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a
 different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☑ Field Determination. Date: 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in
 the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___________ Linear Feet Width (ft) and/or ___________ Acres
 Wetlands Acres: ___________
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered
 jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a
 significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.15446
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 143

U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW: []
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW: []
Project waters are aerial (straight) miles from tributary to RPW: []

Project waters cross or serve as state boundaries. Explain: []

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir,McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural []

Tributary properties with respect to top of bank (estimate):

- Average Width (ft): []
- Average Depth (ft): []
- Average Side Slopes: 3:1 []

Primary tributary substrate composition (check all that apply):

- ☑ Silts
- ☑ Sands
- ☑ Concrete
- ☑ Muck
- ☑ Gravel
- ☑ Substrate - Vegetation
- Other, Explain: []

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight []

Tributary Gradient (approximate average slope): 1% []

(c) Flow:

Tributary Provides for: Ephemeral Flow []

Estimate average number of flow events in review area/year: 2-5 []

Describe Flow Regime: Ephemeral. []

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined []

Subsurface Flow: No []

☐ Dye (or other) test performed: []

Tributary Has (Check all that apply):

- ☐ Bed and Banks
- ☑ OHWM (check all the apply): OHWM Indicators:
 - ☑ Clear, natural line impressed on the bank
 - ☑ Changes in soil character
 - ☑ Shelving
 - ☑ Vegetation matted down, bent or absent
 - ☑ Leaf litter disturbed or washed away
 - ☑ Sediment deposition
 - ☑ Water staining
- Other (list): []

☐ Discontinuous? Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
 - [] Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: [] Width (Ft).
 - [] Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 143

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams) linear feet:
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 143

USDA Nat’l Res Conservation Service Soil Survey

Citation:

☐ National Wetlands Inventory Maps

Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 144
State: AZ
County/Parish/ borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___________________ Linear Feet __________________ Width (ft) and/or __________________ Acres
 Wetlands Acres: ___________________
 c. Limits (boundaries) of Jurisdiction based on:
2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: []

☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.54750
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

[] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

[] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []
- Mean High Water Mark indicated by: []
- Survey to available Datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally-sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: [] Explain:
- Surface Flow is: []

- Characteristics: []

Subsurface Flow: [] Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []

Flow is From:

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs
 - Linear Feet: __________________ Width (ft): ___________ TNW Acres: ___________
 - Wetlands adjacent to TNWs: Acres: ___________

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters Linear Feet: ___________ Width (Ft).
 - Other non-wetland waters: Acres: ___________

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): ___________ Width (feet): ___________ Acres: ___________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary by which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet:
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 591.85 linear feet (ft), 12.57 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 144

☐ USDA Nat’l Res Conservation Service Soil Survey

☐ National Wetlands Inventory Maps

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 145

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 145
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTIO
 There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTIO
 There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________________
 ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01298
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

Project waters are [] river Miles from tributary to RPW:

Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are [] aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: [] Natural

Explain:

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:] [] Stable.

Presence of Run/Riffle/Pool Complexes. Explain: [] Not present.

Tributary Geometry: [] Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: [] Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: [] Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: [] Discrete and Confined

Characteristics:

Subsurface Flow: [] No

Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

 Other (list):

- [] Discontinuous? Explain:

- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community

Other (list):
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known:

[]

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally-sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: []

Surface Flow is: []

Characteristics:

Subsurface Flow: [] Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Not Directly Abutting Non-TNW []
- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:
- □ Habitat for:
 - □ Federally Listed Species Explain:
 - □ Fish/Spawn Areas Explain:
 - □ Other environmentally-sensitive species Explain:
 - □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): __________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): ______ linear feet: ______ width (ft): ______

☐ Other Non-wetland Waters MBR ______ acres:

☐ Wetlands MBR ______ acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters ______ linear feet (ft), ______ acres

☐ Other waters ______ acres

☐ Wetlands ______ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 145

USDA Nat'l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ___________________________ (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

**C. PROJECT LOCATION AND BACKGROUND INFORMATION: ** Drains Feature 146

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

A tributary that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00993
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Bedrock
- Substrate - Vegetation
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:

Other (list):

Other (check all that apply):

Feature ID: 146
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

- Mean High Water Mark indicated by:

- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
- Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: Width (ft): TNW Acres
- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON‐JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non‐Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non‐jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non‐wetland‐Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non‐wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non‐jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non‐wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles
Feature ID: 146

☐ USDA Nat’l Res Conservation Service Soil Survey
Citation:

☐ National Wetlands Inventory Maps
Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISD IONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 147

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site:</td>
<td>Lat. 32.8482°N</td>
<td>Long. -111.2599°W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest waterbody:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gila River between Powers Butte and Gillespie Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC):</td>
<td>15050100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 - Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatice resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - **(i) General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00117
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - **(ii) Physical Characteristics:**
 - **(a) Relationship with TNW**
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ______________________
- Oil or scum line along shore objects: ______________________
- Fine shell or debris deposits (foreshore): ______________________
- Physical markings/characteristics: ______________________
- Tidal gauges: ______________________
- Other: ______________________
- Mean High water Mark indicated by: ______________________
- Survey to available datum: ______________________
- Physical markings: ______________________
- Vegetation lines/changes in vegetation types: ______________________

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: ______________________

Identify Specific Pollutants, if known: ______________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ______________________
- Wetland Fringe Characteristics: ______________________

Habitat for:

- Federally Listed Species Explain findings: ______________________
- Fish/Spawn Areas Explain findings: ______________________
- Other environmentally-sensitive species Explain findings: ______________________
- Aquatic/Wildlife diversity Explain: ______________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): ______________________
- Wetland Type, Explain: ______________________
- Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ______________________ Explain: ______________________

Surface Flow is: ______________________ Characteristics: ______________________

Subsurface Flow: ______________________ Explain Findings: ______________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ______________________
 - Ecological connection Explain: ______________________
 - Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ______________________

Project Wetlands: Aerial Miles from TNW: ______________________

Flow is From: ______________________

Estimate approximate Location of Wetland within Floodplain: ______________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: ________ Width (ft): ________ TNW Acres ________
 - Wetlands adjacent to TNWs: Acres: ________

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ________
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ________ Width (ft): ________
 - Other non-wetland waters: Acres: ________

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ________
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet):

Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ___________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

| Date: | July 5, 2013 |

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

| Name | Los Angeles District, File No. Pending |

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

| Drainage Feature | 148 |

State:	AZ
County/Parish/borough:	Pinal County
City:	N/A

| Center coordinates of site: | Lat. 32.8482°N Long. -111.2599°W |

| Name of nearest waterbody: | |

| Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: | Gila River between Powers Butte and Gillespie Dam |

| Name of watershed or Hydrologic Unit Code (HUC): | 15050100 |

- [] Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- [] Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

| There | Are No |

- [] Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- [] Waters subject to the ebb and flow of the tide.

- [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

| There | Are No |

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 | Non-Wetlands waters | Linear Feet | Width (ft) and/or Acres |
 | Wetlands Acres: | |

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 - [] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 | Explain: | Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW. |
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.15241
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 ii) Physical Characteristics:

 a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary properties with respect to top of bank (estimate):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Width (ft):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
<td></td>
</tr>
<tr>
<td>Primary tributary substrate composition (check all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑ Silts</td>
<td>☐ Sands</td>
<td>☐ Concrete</td>
</tr>
<tr>
<td>☐ Cobbles</td>
<td>☐ Gravel</td>
<td>☑ Substrate - Vegetation</td>
</tr>
<tr>
<td>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:</td>
<td>Stable.</td>
<td></td>
</tr>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain:</td>
<td>Not present.</td>
<td></td>
</tr>
<tr>
<td>Tributary Geometry:</td>
<td>Relatively Straight</td>
<td></td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope):</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate average number of flow events in review area/year:</td>
<td>2-5</td>
</tr>
<tr>
<td>Describe Flow Regime:</td>
<td>Ephemeral.</td>
</tr>
<tr>
<td>Other Information on Duration and Volume:</td>
<td></td>
</tr>
<tr>
<td>Surface Flow is:</td>
<td>Discrete and Confined</td>
</tr>
<tr>
<td>Subsurface Flow:</td>
<td>No</td>
</tr>
<tr>
<td>Dye (or other) test performed:</td>
<td></td>
</tr>
<tr>
<td>Tributary Has (Check all that apply):</td>
<td></td>
</tr>
<tr>
<td>☐ Bed and Banks</td>
<td></td>
</tr>
<tr>
<td>☑ OHWM (check all the apply): OHWM Indicators:</td>
<td></td>
</tr>
<tr>
<td>☑ Clear, natural line impressed on the bank</td>
<td>☑ Presence of litter and debris</td>
</tr>
<tr>
<td>☑ Changes in soil character</td>
<td>☐ Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>☑ Shelving</td>
<td>☐ Presence of wrack line</td>
</tr>
<tr>
<td>☑ Vegetation matted down, bent or absent</td>
<td>☐ Sediment sorting</td>
</tr>
<tr>
<td>☑ Leaf litter disturbed or washed away</td>
<td>☑ Scour</td>
</tr>
<tr>
<td>☑ Sediment deposition</td>
<td>☐ Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>☑ Water staining</td>
<td>☐ Abrupt change in plant community</td>
</tr>
<tr>
<td>Other (list):</td>
<td></td>
</tr>
<tr>
<td>☐ Discontinuous?</td>
<td>Explain:</td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely deterministic of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th></th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Provide estimates for jurisdictional waters in the review area (check all that apply):
 | Linear Feet: | Width (ft): |
 | Tributary waters |
 | Other non-wetland waters: |

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th></th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Provide estimates of jurisdictional waters within the review area (check all that apply):
 | Linear Feet: | Width (ft): | Acres: |
 | Length (Linear Feet): |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th></th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th></th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 642.39 linear feet (ft), 6.94 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 148</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date):</td>
</tr>
<tr>
<td>Other Photographs (Name and Date):</td>
</tr>
<tr>
<td>Previous Determinations</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 Drainage Feature 149
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW:

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 Watershed Size (sq mi): 49650

 Drainage Area (sq mi): 0.06118

 Average Annual Rainfall (in): 10

 Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 [] Tributary flows directly to TNW

 [] Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

[] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ______________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: _______________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________
- Fish/Spawn Areas Explain findings: _________________________
- Other environmentally -sensitive species Explain findings: __________________
- Aquatic/Wildlife diversity Explain: _________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: _________________________
- Wetland Quality, Explain: ________________________

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________
- Surface Flow is: _____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________

Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ____________________________

- Ecological connection Explain: ____________________________

- Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review are (check all that apply):

<table>
<thead>
<tr>
<th></th>
<th>Width (Ft).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary waters</td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters:</td>
<td>Acres:</td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet):</th>
<th>Width (feet):</th>
<th>Acres:</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 201.27 linear feet (ft), 3.10 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 149

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 15

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No navigable waters of the U.S. within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No waters of the U.S. within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.08843
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ____________________________
- [] Mean High water Mark indicated by: ____________________
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ____________________________
- [] Wetland Fringe Characteristics: ____________________________

Habitat for:

- [] Federally Listed Species Explain findings: ____________________________
- [] Fish/Spawn Areas Explain findings: ____________________________
- [] Other environmentally sensitive species Explain findings: ____________________________
- [] Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________ Explain: ____________________________
- Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ____________________________
- Ecological connection Explain: ____________________________
- Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________________
- Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environment-sensitve species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______
 - [] Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: ______ Width (ft): ______
 - [] Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - [] Wetlands directly abutting an RPW where tributaries typically flow "seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: ________________________________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: ________________________________
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 552.56 linear feet (ft), 56.18 width (ft)
☑ Other waters acres
☑ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 15

USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 150

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:

☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.19678
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
- Stable.

Presence of Run/Riffle/Pool Complexes. Explain:
- Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope):
- 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year:
- 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
- Discrete and Confined

Subsurface Flow:
- No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>High tide line indicated by:</td>
</tr>
<tr>
<td>☐</td>
<td>Mean High water Mark indicated by:</td>
</tr>
<tr>
<td>☐</td>
<td>oil or scum line along shore objects</td>
</tr>
<tr>
<td>☐</td>
<td>fine shell or debris deposits (foreshore)</td>
</tr>
<tr>
<td>☐</td>
<td>physical markings/characteristics</td>
</tr>
<tr>
<td>☐</td>
<td>tidal gauges</td>
</tr>
<tr>
<td>☐</td>
<td>other</td>
</tr>
<tr>
<td>☐</td>
<td>survey to available datum</td>
</tr>
<tr>
<td>☐</td>
<td>physical markings</td>
</tr>
<tr>
<td>☐</td>
<td>vegetation lines/changes in vegetation types</td>
</tr>
</tbody>
</table>

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Riparian Corridor Characteristics:</td>
</tr>
<tr>
<td>☐</td>
<td>Wetland Fringe Characteristics:</td>
</tr>
</tbody>
</table>

Habitat for:

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Federally Listed Species Explain findings:</td>
</tr>
<tr>
<td>☐</td>
<td>Fish/Spawn Areas Explain findings:</td>
</tr>
<tr>
<td>☐</td>
<td>Other environmentally sensitive species Explain findings:</td>
</tr>
<tr>
<td>☐</td>
<td>Aquatic/Wildlife diversity Explain:</td>
</tr>
</tbody>
</table>

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Size (ac):</td>
<td></td>
</tr>
<tr>
<td>Wetland Type, Explain:</td>
<td></td>
</tr>
<tr>
<td>Wetland Quality, Explain:</td>
<td></td>
</tr>
</tbody>
</table>

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Wetland Directly Abutting Non-TNW</td>
</tr>
<tr>
<td>☐</td>
<td>Wetland Not Directly Abutting Non-TNW</td>
</tr>
<tr>
<td>☐</td>
<td>Discrete wetland hydrologic connection Explain:</td>
</tr>
<tr>
<td>☐</td>
<td>Ecological connection Explain:</td>
</tr>
<tr>
<td>☐</td>
<td>Separated by berm/barrier Explain:</td>
</tr>
</tbody>
</table>

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Name:

Title:

Date:

Page:

Page 1 of 4
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
 Explain:
- [] Vegetation type/percent cover. Explain:
 Habitat for:
 - [] Federally Listed Species Explain:
 - [] Fish/Spawn Areas Explain:
 - [] Other environmentally-sensitive species Explain:
 - [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft) acres
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 151

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________

 ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02262
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are Project waters are Project waters are 30 (or more) aerial (straight) miles from tributary to RPW:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

Bed and Banks

OHWM (check all the apply): OHWM Indicators:
- Clear, natural line impressed on the bank
- Changes in soil character
- Shelving
- Vegetation matted down, bent or absent
- Leaf litter disturbed or washed away
- Sediment deposition
- Water staining

Other (list): Presence of litter and debris

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by: __________
- oil or scum line along shore objects __________
- fine shell or debris deposits (foreshore) __________
- physical markings/characteristics __________
- tidal gauges __________
- other __________
- Mean High water Mark indicated by: __________
- survey to available datum __________
- physical markings __________
- vegetation lines/changes in vegetation types __________

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __________
Identify Specific Pollutants, if known: __________

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics: __________
- Wetland Fringe Characteristics: __________
Habitat for:
- Federally Listed Species Explain findings: __________
- Fish/Spawn Areas Explain findings: __________
- Other environmentally -sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: __________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): __________
- Wetland Type, Explain: __________
- Wetland Quality, Explain: __________
Project Wetlands Cross or Serve as State Boundaries, Explain: __________
(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: __________ Explain: __________
- Surface Flow is: __________
- Characteristics: __________
- Subsurface Flow: __________ Explain Findings: __________
(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: __________
- Ecological connection Explain: __________
- Separated by berm/barrier Explain: __________
(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW: __________
Project Wetlands: Aerial Miles from TNW: __________
Flow is From: __________
Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III C2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 152

| State: | AZ | County/Parish/borough: | Pinal County |
| City: | N/A |

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters __________ Linear Feet __________ Width (ft) and/or __________ Acres
 - Wetlands Acres: __________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 - [] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: ______________________
 - ☐ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 54.34713
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 152</th>
</tr>
</thead>
</table>

Project waters are | river Miles from tributary to RPW: |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td></td>
<td>Project waters are aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td></td>
<td>Project waters cross or serve as state boundaries. Explain:</td>
</tr>
</tbody>
</table>

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain: ________________

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

- **Surface Flow is:** Discrete and Confined
 Characteristics:
- **Subsurface Flow:** No
 Explain:
- **Dye (or other) test performed:**

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community
 - [] Other (list):

- [] Discontinuous?
 Explain:

Project waters are Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

□ Mean High water Mark indicated by:
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/ Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is: Characteristics:

- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width): []
- [] Vegetation type/percent cover. Explain: []
- [] Habitat for:
 - [] Federally Listed Species Explain: []
 - [] Fish/Spawn Areas Explain: []
 - [] Other environmentally-sensitive species Explain: []
 - [] Aquatic/Wildlife Diversity Explain: []

3. Characteristics of all wetlands adjacent to the tributary (if any)

- All wetland(s) being considered in cumulative analysis: []
- Wetland acres in total being considered in cumulative analysis: []

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all of its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________

☐ Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: __________ Width (Ft): __________

☐ Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet):

Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 152</th>
</tr>
</thead>
</table>

U.S Army Cops of Engineers

<table>
<thead>
<tr>
<th></th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs</td>
<td>Name and Date: Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law</td>
<td>Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation:</td>
</tr>
</tbody>
</table>

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 153

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00096
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through _______ tributaries before entering TNW
 Project waters are _______ river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Other (list):

Discontinuous? Explain:

Other (list):
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []
- Mean High water Mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally-sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): []
Wetland Type, Explain: []
Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: []

Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []
Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

|☐| TNWs | Linear Feet: | Width (ft): | TNW Acres |
|☐| Wetlands adjacent to TNWs: | Acres: |

2. RPWs that flow directly or indirectly into TNWs

|☐| Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: |
|☐| Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: |

Provide estimates for jurisdictional waters in the review area (check all that apply):

|☐| Tributary waters | Linear Feet: | Width (Ft): |
|☐| Other non-wetland waters: | Acres: |

3. Non-RPWs that flow directly or indirectly into TNWs.

|☐| Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C. Provide estimates of jurisdictional waters within the review area (check all that apply):

| Length (Linear Feet): | Width (feet): | Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

|☐| Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. |

|☐| Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: |

|☐| Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: |

Provide acreage estimates for jurisdictional wetland in the review area: | Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

|☐| Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area: | Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [✓] Non-wetland waters linear feet (ft), width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [✓] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [✓] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [✓] US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 153

☐ USDA Nat'l Res Conservation Service Soil Survey
Citation: [Blank]

☐ National Wetlands Inventory Maps
Cite Map Name: [Blank]

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps: [Blank]

☐ 100-year Floodplain Elevation is: [Blank]
(National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
File No. and Date of Response Letter: [Blank]

☐ Applicable/Supporting Case Law Citation: [Blank]

☐ Applicable/Supporting Scientific Literature Citation: [Blank]

Other Information, Please Specify: [Blank]

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 154

- State: AZ
- County/Parish/borough: Pinal County
- City: N/A
- Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
- Name of watershed or Hydrologic Unit Code (HUC): 15050100
- Name of nearest waterbody:
- Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
- Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
- Name of watershed or Hydrologic Unit Code (HUC): 15050100
- Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 - Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:

☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.20656</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW

☑ Tributary flows through 4 tributaries before entering TNW

Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [x] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: _______________________
- Wetland Fringe Characteristics: ___________________________

Habitat for:

- Federally Listed Species Explain findings: __________________
- Fish/Spawn Areas Explain findings: _________________________
- Other environmentally-sensitive species Explain findings: ______
- Aquatic/Wildlife diversity Explain: _________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: ________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________ Explain: __________________________
- Surface Flow is: ____________________________

Characteristics:

Subsurface Flow: ____________________________ Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: ____________________________
- Ecological connection Explain: ____________________________
- Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________________
- Project Wetlands: Aerial Miles from TNW: ____________________________
- Flow is From: ____________________________
- Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:
 Habitat for:
 - [] Federally Listed Species Explain:
 - [] Fish/Spawn Areas Explain:
 - [] Other environmentally-sensitive species Explain:
 - [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:
This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - □ TNWs
 - □ Width (ft):
 - □ TNW Acres
 - □ Wetlands adjacent to TNWs: Acres:

2. **RPWs that flow directly or indirectly into TNWs**
 - □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - □ Tributary waters Linear Feet: Width (Ft).
 - □ Other non-wetland waters: Acres:

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft) acres
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Approved Jurisdictional Determination Form
U.S. Army Corps of Engineers

Feature ID: 154

- USDA Nat’l Res Conservation Service Soil Survey
 Citation:
- National Wetlands Inventory Maps
 Cite Map Name:
- State/Local Wetland Inventory Maps
- FEMA/FIRM Maps:
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
 - Aerial Photographs
 (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - Other Photographs
 (Name and Date): Ground Photos; June through July 2012, September through October 2012
- Previous Determinations
 File No. and Date of Response Letter:
- Applicable/Supporting Case Law
 Citation:
- Applicable/Supporting Scientific Literature
 Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 155
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
✓ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
✓ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: [Blank]
 ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04265
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks]. Explain: Stable.

Presence of Run/Riffle/Poold Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed: No

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by:
- Mean High water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:

Hi: tide line indicated by:
Mean: High water Mark indicated by:
Physical: markings
Vegetation: lines/changes in vegetation types
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:
Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical, and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Wetlands adjacent to TNWs:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Other non-wetland waters:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 155

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft):
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 155

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 156

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00747
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
 Average Width (ft):
 Average Depth (ft):
 Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
 ✔ Silts □ Sands □ Concrete □ Muck
 □ Cobble □ Gravel □ Substrat - Vegetation Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
 □ Bed and Banks
 ✔ OHWM (check all the apply): OHWM Indicators:
 □ Clear, natural line impressed on the bank
 ✔ Changes in soil character
 □ Shelving
 □ Vegetation matted down, bent or absent
 □ Leaf litter disturbed or washed away
 □ Sediment deposition
 □ Water staining
 ○ Other (list):
 □ Discontinuous? Explain:

□ Presence of litter and debris
□ Destruction of terrestrial vegetation
□ Presence of wrack line
□ Sediment sorting
□ Scour
□ Multiple observed or predicted flow events
□ Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by:
- [] oiled or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

- [] Mean High water Mark indicated by:
- [] survey to available datum
- [] physical markings
- [] vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics:
- [] Wetland Fringe Characteristics:

Habitat for:

- [] Federally Listed Species Explain findings:
- [] Fish/Spawn Areas Explain findings:
- [] Other environmentally sensitive species Explain findings:
- [] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:
Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW
 - [] Discrete wetland hydrologic connection Explain:
 - [] Ecological connection Explain:
 - [] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
- Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: __________ Width (Ft): __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
156

Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 156

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICATION DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 157

 State: AZ County/Parish/borough: Pinal County City: N/A

 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

 Name of watershed or Hydrologic Unit Code (HUC): 15050100

 ✔ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

 □ Check if other sites (e.g, offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

 □ Office (Desk) Determination. Date:

 ✔ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

□ Waters subject to the ebb and flow of the tide.

□ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 □ TNWs (new)
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ✔ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offshore. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 52.66796
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

(ii) Physical Characteristics:

 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are 30 or more (or more) aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
 Average Width (ft):
 Average Depth (ft):
 Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
 yes Silts
 yes Cobbles
 yes Bedrock
 yes Sands
 yes Concrete
 yes Gravel
 yes Substrate - Vegetation
 no Muck
 other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Poold Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

<table>
<thead>
<tr>
<th>Surface Flow is: Discrete and Confined</th>
<th>Characteristics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsurface Flow: No Explain:</td>
<td></td>
</tr>
<tr>
<td>Dye (or other) test performed:</td>
<td></td>
</tr>
</tbody>
</table>

Tributary Has (Check all that apply):
 no Bed and Banks
 yes OHWM (check all the apply): OHWM Indicators:
 yes Clear, natural line impressed on the bank
 yes Changes in soil character
 yes Shelving
 yes Vegetation matted down, bent or absent
 yes Leaf litter disturbed or washed away
 yes Sediment deposition
 yes Water staining
 yes Presence of litter and debris
 no Destruction of terrestrial vegetation
 no Presence of wrack line
 no Sediment sorting
 no Scour
 no Multiple observed or predicted flow events
 yes Abrupt change in plant community

Other (list):

<table>
<thead>
<tr>
<th>Discontinuous? Explain:</th>
</tr>
</thead>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: __________________________
- [] Oil or scum line along shore objects
- [] Fine shell or debris deposits (foreshore)
- [] Physical markings/characteristics
- [] Tidal gauges
- [] Other __________________________
- [] Mean high water mark indicated by: __________________________
- [] Survey to available datum
- [] Physical markings
- [] Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify specific pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian corridor characteristics: __________________________
- [] Wetland fringe characteristics: __________________________

Habitat for:

- [] Federally listed species
- [] Fish/spawn areas
- [] Other environmentally sensitive species
- [] Aquatic/wildlife diversity

Explain findings:

(a) General Wetland Characteristics

Properties:

- Wetland size (ac): __________________________
- Wetland type, explain: __________________________
- Wetland quality, explain: __________________________

Project wetlands cross or serve as state boundaries, explain:

(b) General Flow Relationship with Non-TNW:

Wetland flow is: __________________________

Explain:

Surface flow is: __________________________

Characteristics: __________________________

Subsurface flow: __________________________

Explain findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland directly abutting non-TNW
- [] Wetland not directly abutting non-TNW
 - [] Discrete wetland hydrologic connection
 - [] Ecological connection
 - [] Separated by berm/barrier

Explain:

(d) Proximity (Relationship) to TNW

Project wetlands: river miles from TNW: __________________________

Project wetlands: aerial miles from TNW: __________________________

Flow is from: __________________________

Estimate approximate location of wetland within floodplain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland size (ac): __________________________
- Wetland type, explain: __________________________
- Wetland quality, explain: __________________________

Project wetlands cross or serve as state boundaries, explain:

(b) General Flow Relationship with Non-TNW:

Wetland flow is: __________________________

Explain:

Surface flow is: __________________________

Characteristics: __________________________

Subsurface flow: __________________________

Explain findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland directly abutting non-TNW
- [] Wetland not directly abutting non-TNW
 - [] Discrete wetland hydrologic connection
 - [] Ecological connection
 - [] Separated by berm/barrier

Explain:

(d) Proximity (Relationship) to TNW

Project wetlands: river miles from TNW: __________________________

Project wetlands: aerial miles from TNW: __________________________

Flow is from: __________________________

Estimate approximate location of wetland within floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: The above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - [] Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: __________ Width (ft): __________
 - [] Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): _______ linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR _______ acres: _______

☐ Wetlands MBR _______ acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 2840.59 linear feet (ft), 22.39 width (ft)

☐ Other waters _______ acres

☐ Wetlands _______ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>157</th>
</tr>
</thead>
</table>
| **APPROVED JURISDICTIONAL DETERMINATION FORM**
U.S Army Cops of Engineers |

USDA Nat'l Res Conservation Service Soil Survey	Citation:
National Wetlands Inventory Maps	Cite Map Name:
State/Local Wetland Inventory Maps	
FEMA/FIRM Maps:	
100-year Floodplain Elevation is:	(National Geodetic Vertical Datum of 1929)
Aerial Photographs (Name and Date):	Aerials Express Phoenix 2009, BING Aerial Imagery 2011
Other Photographs (Name and Date):	Ground Photos; June through July 2012, September through October 2012
Previous Determinations File No. and Date of Response Letter:	
Applicable/Supporting Case Law Citation:	
Applicable/Supporting Scientific Literature Citation:	
Other Information, Please Specify:	

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 158

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTON

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTON

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ________________________

 ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02448
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 158

U.S Army Corps of Engineers

Project waters are [] river Miles from tributary to RPW:

Project waters are 30 (or more) [] aerial (straight) miles from tributary to TNW:

Project waters are [] aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural [] Explain:

Tributary properties with respect to top of bank (estimate):
- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

| Stable. |

Presence of Run/Riffle/Pool Complexes. Explain:

| Not present. |

Tributary Geometry: Relatively Straight []

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow []

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined []

Subsurface Flow: No []

Dye (or other) test performed: []

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community

Other (list): []

Discontinuous? Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by:
 - [] oil or scum line along shore objects
 - [] fine shell or debris deposits (foreshore)
 - [] physical markings/characteristics
 - [] tidal gauges
 - [] other
- [] Mean High water Mark indicated by:
 - [] survey to available datum
 - [] physical markings
 - [] vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc): Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics:
- [] Wetland Fringe Characteristics:
Habitat for:
 - [] Federally Listed Species Explain findings:
 - [] Fish/Spawn Areas Explain findings:
 - [] Other environmentally sensitive species Explain findings:
 - [] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
 - Wetland Size (ac):
 - Wetland Type, Explain:
 - Wetland Quality, Explain:
Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: Explain:
Surface Flow is:
Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW
 - [] Discrete wetland hydrologic connection Explain:
 - [] Ecological connection Explain:
 - [] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>checkbox</th>
<th>TNWs</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
<th>Wetlands adjacent to TNWs</th>
<th>Acres</th>
</tr>
</thead>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>checkbox</th>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
</tr>
<tr>
<td></td>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
</tr>
<tr>
<td></td>
<td>Tributary waters</td>
</tr>
<tr>
<td></td>
<td>Other non-wetland waters</td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>checkbox</th>
<th>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Provide estimates of jurisdictional waters within the review area (check all that apply):</td>
</tr>
<tr>
<td></td>
<td>Length (Linear Feet)</td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>checkbox</th>
<th>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
</tr>
<tr>
<td></td>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW</td>
</tr>
<tr>
<td></td>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
</tr>
</tbody>
</table>

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>checkbox</th>
<th>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
</tr>
</tbody>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

...
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet:
width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 835.14 linear feet (ft), 4.42 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 158

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ___________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 159

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Center coordinates of site:</th>
<th>Lat.</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32.8482°N</td>
<td>-111.2599°W</td>
</tr>
</tbody>
</table>

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Los Angeles River

Name of watershed or Hydrologic Unit Code (HUC):
15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___ Linear Feet ______ Width (ft) and/or ______ Acres
 Wetlands Acres: ______

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.01472
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**
 - □ Tributary flows directly to TNW
 - [] Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [X] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
- Stable.

Presence of Run/Riffle/Pool Complexes. Explain:
- Not present.

Tributary Geometry:
- Relatively Straight
- Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for:
- Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime:
- Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
- Discrete and Confined

Subsurface Flow:
- No
- Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- [X] OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ___________________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

□ Mean High water Mark indicated by: ___________________________
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

[] Explain: ___________________________

Identify Specific Pollutants, if known: ___________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

[] Riparian Corridor Characteristics: ___________________________

[] Wetland Fringe Characteristics: ___________________________

Habitat for:

[] Federally Listed Species Explain findings: ___________________________

[] Fish/Spawn Areas Explain findings: ___________________________

[] Other environmentally-sensitive species Explain findings: ___________________________

[] Aquatic/Wildlife diversity Explain: ___________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): ___________________________

Wetland Type, Explain: ___________________________

Wetland Quality, Explain: ___________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ___________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ___________________________

[] Explain: ___________________________

Surface Flow is: ___________________________

Characteristics: ___________________________

Subsurface Flow: ___________________________

Explain Findings: ___________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

[] Discrete wetland hydrologic connection Explain: ___________________________

[] Ecological connection Explain: ___________________________

[] Separated by berm/barrier Explain: ___________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ___________________________

Project Wetlands: Aerial Miles from TNW: ___________________________

Flow is From: ___________________________

Estimate approximate Location of Wetland within Floodplain: ___________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: Width (ft): TNW Acres
 - [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
Other Non-wetland Waters MBR acres:
Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

Non-wetland waters linear feet (ft), width (ft)
Other waters acres
Wetlands acres

EXPLANATION OF FINDING OF NO SIGNIFICANT NEXUS:

See Section IIIC2.

MAPS, PLANS, PLOTS OR PLAT SUBMITTED BY APPLICANT/CONSULTANT: WestLand Resources, Inc.

DATA SHEETS PREPARED/SUBMITTED BY OR ON BEHALF OF APPLICANT/CONSULTANT:

Office Concurs with data sheets/delineation report
Office Does Not Concur with data sheets/delineation report

DATA SHEETS PREPARED BY THE CORPS

Corps Navigable Water Study

US Geological Survey Hydrologic Atlas

USGS NHD Data

USGS 8 and 12 digit HUC Maps

US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 159</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
</tr>
<tr>
<td>Aerial Photographs</td>
</tr>
<tr>
<td>Aerial Photographs</td>
</tr>
<tr>
<td>Previous Determinations</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 16

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination.
Date:

☑ Field Determination.
Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters __________ Linear Feet __________ Width (ft) and/or __________ Acres
 Wetlands Acres: __________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.01361
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**
 - **(a) Relationship with TNW**
 - Tributary flows directly to TNW
 - Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
Other (list):
Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: □
- Mean High water Mark indicated by: □
- Oil or scum line along shore objects □
- Fine shell or debris deposits (foreshore) □
- Physical markings/characteristics □
- Tidal gauges □
- Other □

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

Identify findings:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Explain:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:

Explanations

- High tide line: Indicated by natural or artificial high tide features.
- Mean High water Mark: Indicated by survey to available datum or physical markings.
- Chemical Characteristics: Describe the chemical properties of the water, such as color, clarity, and film formation.
- Biological Characteristics: Describe the characteristics of the riparian corridor and wetland fringe.
- Habitat: Identify the presence of Federally Listed Species, Fish/Spawn Areas, and Other environmentally-sensitive species.
- Physical Characteristics: Provide details on wetland size, type, and quality.
- Flow Relationship: Describe the flow into and out of the wetland.
- Adjacency Determination: Identify if the wetland is directly or not directly abutting the non-TNW.
- Proximity to TNW: Measure the distance from the wetland to the TNW.
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):
☐ Vegetation type/percent cover. Explain:
Habitat for:
☐ Federally Listed Species Explain:
☐ Fish/Spawn Areas Explain:
☐ Other environmentally-sensitive species Explain:
☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
- Width (ft):
- TNW Acres
- [] Wetlands adjacent to TNWs
- Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - [] Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy north, Picacho Pass, Picacho reservoir, Picacho reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 16</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Feature ID: 16</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Feature ID: 16</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat'l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
<td></td>
</tr>
<tr>
<td>☑ Aerial Photographs (Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>☑ Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
<td></td>
</tr>
</tbody>
</table>

APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Cops of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 16</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat'l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
<td></td>
</tr>
<tr>
<td>☑ Aerial Photographs (Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>☑ Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
<td></td>
</tr>
</tbody>
</table>
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 160
 State: AZ
 County/Parish/borough: Pinal County
 City: N/A
 Center coordinates of site: Lat. 32.8482°N
 Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.10231</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

- □ Tributary flows directly to TNW
- ✔ Tributary flows through 4 tributaries before entering TNW
- Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 160</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries.</td>
<td>Explain:</td>
</tr>
</tbody>
</table>

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- ✔ Silts
- ☐ Sands
- ☐ Concrete
- ☐ Muck
- ☐ Gravel
- ☑ Substrate - Vegetation
- Other, Explain: |

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

- ☐ Bed and Banks
- ✔ OHWM (check all the apply): OHWM Indicators:
 - ☑ Clear, natural line impressed on the bank
 - ☑ Changes in soil character
 - ☑ Shelving
 - ☑ Vegetation matted down, bent or absent
 - ☑ Leaf litter disturbed or washed away
 - ☑ Sediment deposition
 - ☑ Water staining
 - Other (list): |
 - ☐ Discontinuous? Explain: |
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ___________________________
- Mean High water Mark indicated by: ___________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __

Identify Specific Pollutants, if known: ____________________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________________
- Wetland Fringe Characteristics: ______________________________________

Habitat for:
- Federally Listed Species Explain findings: ________________________________
- Fish/Spawn Areas Explain findings: ______________________________________
- Other environmentally-sensitive species Explain findings: ___________________
- Aquatic/Wildlife diversity Explain: ______________________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): ___________________________
- Wetland Type, Explain: ___________________________
- Wetland Quality, Explain: ___________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ___________________________ Explain: ___________________________

Surface Flow is: ___________________________

Characteristics: ___________________________

Subsurface Flow: ___________________________ Explain Findings: ___________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: ___________________________
- Ecological connection Explain: ___________________________
- Separated by berm/barrier Explain: ___________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ___________________________

Project Wetlands: Aerial Miles from TNW: ___________________________

Flow is From: ___________________________

Estimate approximate Location of Wetland within Floodplain: ____________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands.
Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: Width (ft): TNW Acres
- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisprudential. Provide data and Rationale indicating that tributary is perennial:
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisprudential. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisprudential waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisprudential. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisprudential waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisprudential as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisprudential wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisprudential. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisprudential wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): __________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________

Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters __________

Explain finding of no Significant Nexus: See Section III C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________
☐ Other Non-wetland Waters MBR acres: __________
☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 727.35 linear feet (ft), 50.16 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 160

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 161

 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100

 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters __________ Linear Feet __________ Width (ft) and/or __________ Acres
 Wetlands Acres: __________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: _____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00358
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through ______ tributaries before entering TNW
 Project waters are ______ river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:

Other (list):
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ____________________________ [] Mean High water Mark indicated by: ______________________
 - [] oil or scum line along shore objects
 - [] fine shell or debris deposits (foreshore)
 - [] physical markings/characteristics
 - [] tidal gauges
 - [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: ____________________________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ____________________________
- [] Wetland Fringe Characteristics: ____________________________

Habitat for:

- [] Federally Listed Species Explain findings: ____________________________
- [] Fish/Spawn Areas Explain findings: ____________________________
- [] Other environmentally - sensitive species Explain findings: ____________________________
- [] Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________
Explain: ____________________________
Surface Flow is: ____________________________
Characteristics: ____________________________
Subsurface Flow: ____________________________
Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Not Directly Abutting Non-TNW
- [] Wetland Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain: ____________________________
- [] Ecological connection Explain: ____________________________
- [] Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________
Flow is From: ____________________________
Estimate approximate Location of Wetland within Floodplain: ____________________________...
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: _______ Width (ft): _______ TNW Acres: _______

☐ Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: _______ Width (Ft): _______

☐ Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
- [] Other Non-wetland Waters MBR acres: []
- [] Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters 543.94 linear feet (ft), 4.87 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- [] Office Concurs with data sheets/delineation report
- [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
- [] USGS NHD Data
- [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

Feature ID: 161

U.S Army Cops of Engineers

<table>
<thead>
<tr>
<th>Feature</th>
<th>Citation</th>
<th>Feature</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'I Res Conservation Service Soil Survey</td>
<td></td>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
<td></td>
</tr>
<tr>
<td>Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td></td>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 162

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599”W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters [Linear Feet] Width (ft) and/or [Acres]

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.05075 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 - □ Tributary flows directly to TNW
 - ✔ Tributary flows through ______ tributaries before entering TNW

 Project waters are ______ (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 162

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation

Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Other (list):

- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain: []
- Surface Flow is: []

- Characteristics: []

- Subsurface Flow: Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

□ TNWs Linear Feet: Width (ft): TNW Acres

□ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

□ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

□ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

□ Tributary waters Linear Feet: Width (Ft).

□ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

□ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

□ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

□ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

□ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

□ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
162

Feature ID: 162

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ________ Acres: ________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ________ width (ft): ________
☐ Other Non-wetland Waters MBR acres: ________
☐ Wetlands MBR acres: ________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 698.91 linear feet, 6.88 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 162

USDA Nat'l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 163

<table>
<thead>
<tr>
<th>State</th>
<th>AZ</th>
<th>County/Parish/borough</th>
<th>Pinal County</th>
<th>City</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site</td>
<td>Lat.</td>
<td>32.8482°N</td>
<td>Long.</td>
<td>-111.2599°W</td>
<td></td>
</tr>
<tr>
<td>Name of nearest waterbody</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows</td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC)</td>
<td>15050100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date: |
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands Acres:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650 Drainage Area (sq mi): 0.26392 Average Annual Rainfall (in): 10 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW □ Tributary flows through ___ tributaries before entering TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: **Natural**

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: **Stable**.

Presence of Run/Riffle/Pool Complexes. Explain: **Not present**.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: **Ephemeral Flow**

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

- **Properties:**
 - Wetland Size (ac): _______
 - Wetland Type, Explain: _______
 - Wetland Quality, Explain: _______

- Project Wetlands Cross or Serve as State Boundaries, Explain: _______

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: _______ Explain: _______

- Surface Flow is: _______

- Subsurface Flow: _______ Explain Findings: _______

- Characteristics: _______

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: _______
 - Ecological connection Explain: _______
 - Separated by berm/barrier Explain: _______

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: _______
- Project Wetlands: Aerial Miles from TNW: _______

- Flow is From: _______

- Estimate approximate Location of Wetland within Floodplain: _______
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: Width (ft): TNW Acres
- Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☒ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☒ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☒ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is:
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 164
 State: AZ
 County/Parish/borough: Pinal County
 City: N/A
 Center coordinates of site: Lat. 32.8482°N
 Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☑ Field Determination. Date: 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres
 Wetlands Acres: _______
 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: [] Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.04120 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 [] Tributary flows directly to TNW
 [x] Tributary flows through [4] tributaries before entering TNW

 Project waters are [30 (or more)] river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobbles
- Sands
- Concrete
- Bedrock
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Characteristics:

Subsurface Flow: No

Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ____________________________
- [] Mean High water Mark indicated by: _______________________
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ____________________________
- [] Wetland Fringe Characteristics: ____________________________

Habitat for:

- [] Federally Listed Species Explain findings: ____________________________
- [] Fish/Spawn Areas Explain findings: ____________________________
- [] Other environmentally -sensitive species Explain findings: ____________________________
- [] Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain: ____________________________
- [] Ecological connection Explain: ____________________________
- [] Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics etc.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______
 - [] Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: ______
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: ______ Width (Ft): ______
 - [] Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width(ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☒ Non-wetland waters 1688.41 linear feet (ft), 6.42 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☒ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 164

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 165

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination.
Date:

☐ Field Determination.
Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTON

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00975
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW:
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No Explain:

- Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []
- Mean High water Mark indicated by: []
- survey to available datum []
- physical markings []
- vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species: Explain:
 - Fish/Spawn Areas: Explain:
 - Other environmentally-sensitive species: Explain:
 - Aquatic/Wildlife Diversity: Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrolinc connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: __________ Width (ft): ___________ TNW Acres __________
 - Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: __________ Width (Ft): __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC.2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet: width (ft):
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 165

USDA Nat’l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ________________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 166

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ "Waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWS that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWS that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ___________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

 This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

 The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

 A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

 If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.07486
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ☑ Tributary flows through _______ tributaries before entering TNW

 Project waters are _______ river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):
Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________
- Explain: ____________________________
- Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________

Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ____________________________
- Ecological connection Explain: ____________________________
- Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________________
- Project Wetlands: Aerial Miles from TNW: ____________________________
- Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width): [Blank]

☐ Vegetation type/percent cover. Explain: [Blank]

Habitat for:

☐ Federally Listed Species Explain: [Blank]

☐ Fish/Spawn Areas Explain: [Blank]

☐ Other environmentally-sensitive species Explain: [Blank]

☐ Aquatic/Wildlife Diversity Explain: [Blank]

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis: [Blank]

Wetland acres in total being considered in cumulative analysis: [Blank]

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
II. PRELIMINARY CONSIDERATIONS

1. NON-RPWs that flow directly or indirectly into TNWs:

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

[] Length (Linear Feet): [] Width (feet): [] Acres: []

3. NON-RPWs that flow directly or indirectly into TNWs.

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: []
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): __________ Acres: __________________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________

☐ Other Non-wetland Waters MBR acres: __________

☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☒ Non-wetland waters 2195.29 linear feet, 6.56 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concur with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☒ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 166

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 167

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres

Wetlands Acres: _______

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS
A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________
 □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00526
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through _______ tributaries before entering TNW
 Project waters are _______ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Average Width (ft)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Depth (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

- [] Stable.

Presence of Run/Riffle/Pool Complexes. Explain:

- [] Not present.

Tributary Geometry:

- [] Relatively Straight

Tributary Gradient (approximate average slope):

- [] 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other
- Mean High water Mark indicated by:
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
Wetland Size (ac):
Wetland Type, Explain:
Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: Explain:
Surface Flow is:
Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs
 - Linear Feet: ___________________ Width (ft): ___________________ TNW Acres: ___________________
 - Wetlands adjacent to TNWs: Acres: ___________________

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ___________________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ___________________
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Linear Feet: ___________________ Width (Ft): ___________________
 - Other non-wetland waters: Acres: ___________________

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ___________________ Width (feet): ___________________ Acres: ___________________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ___________________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ___________________
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet:
width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft),
4.24 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
USDA Nat’l Res. Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: _ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature

- **State:** AZ
- **County/Parish/borough:** Pinal County
- **City:** N/A

- **Center coordinates of site:** Lat. 32.8482°N, Long. -111.2599°W

- **Name of nearest waterbody:** Gila River between Powers Butte and Gillespie Dam

- **Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:**

- **Name of watershed or Hydrologic Unit Code (HUC):** 15050100

- **Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request:**

- **Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form:**

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination.
- Field Determination.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

- TNWs (new)
- Wetlands adjacent to TNWs
- Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
- Non-RPWs that flow directly or indirectly into TNWs
- Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
- Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
- Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
- Impoundments of jurisdictional waters
- Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area:

- Non-Wetlands waters Linear Feet Width (ft) and/or Acres
- Wetlands Acres:

2. Non-Regulated Waters/Wetlands (check if applicable):

- Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02768
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through ___________ tributaries before entering TNW

 Project waters are ___________ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- ☑ Silts
- ☐ Sands
- ☐ Concrete
- ☐ Muck
- ☐ Gravel
- ☑ Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
- ☐ Bed and Banks
- ☑ OHWM (check all the apply): OHWM Indicators:
 - ☑ Clear, natural line impressed on the bank
 - ☑ Changes in soil character
 - ☑ Shelving
 - ☑ Vegetation matted down, bent or absent
 - ☑ Leaf litter disturbed or washed away
 - ☑ Sediment deposition
 - ☑ Water staining
 - Other (list):
- ☐ Discontinuous? Explain:
- ☑ Presence of litter and debris
- ☑ Destruction of terrestrial vegetation
- ☑ Presence of wrack line
- ☑ Sediment sorting
- ☑ Scour
- ☑ Multiple observed or predicted flow events
- ☑ Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- □ High tide line indicated by: ____________________________ □ Mean High water Mark indicated by: ____________________________
- □ oil or scum line along shore objects
- □ fine shell or debris deposits (foreshore)
- □ physical markings/characteristics
- □ tidal gauges
- □ other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- □ Riparian Corridor Characteristics: ____________________________
- □ Wetland Fringe Characteristics: ____________________________

Habitat for:

- □ Federally Listed Species Explain findings: ____________________________
- □ Fish/Spawn Areas Explain findings: ____________________________
- □ Other environmentally-sensitive species Explain findings: ____________________________
- □ Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________ Explain: ____________________________
- Surface Flow is: ____________________________
- Characteristics: ____________________________
- Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- □ Wetland Directly Abutting Non-TNW
- □ Wetland Not Directly Abutting Non-TNW
 - □ Discrete wetland hydrologic connection Explain: ____________________________
 - □ Ecological connection Explain: ____________________________
 - □ Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________________
- Project Wetlands: Aerial Miles from TNW: ____________________________
- Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):

- Vegetation type/percent cover. Explain:

 Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (Ft).

☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III C2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 427.71 linear feet (ft), 3.64 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 168

USDA Nat’l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 169
State: AZ County/Parish/borough: Pinal County City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There ☐ "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There ☐ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters _______________ Linear Feet _______________ Width (ft) and/or _______________ Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: ________________
 - ☐ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - **(i) General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00314
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - **(ii) Physical Characteristics:**
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through _______ tributaries before entering TNW
 - Project waters are _______ river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Gravel
- Substrate - Vegetation

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed: No

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

☐ High tide line indicated by: ______________________☐ Mean High water Mark indicated by: ______________________
☐ oil or scum line along shore objects ☐ survey to available datum
☐ fine shell or debris deposits (foreshore) ☐ physical markings
☐ physical markings/characteristics ☐ vegetation lines/changes in vegetation types
☐ tidal gauges
☐ other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc): Explain: ______________________
Identify Specific Pollutants, if known: ______________________

(iv) Biological Characteristics. Channel supports (check all that apply):

☐ Riparian Corridor Characteristics: ______________________
☐ Wetland Fringe Characteristics: ______________________
Habitat for:
☐ Federally Listed Species Explain findings: ______________________
☐ Fish/Spawn Areas Explain findings: ______________________
☐ Other environmentally sensitive species Explain findings: ______________________
☐ Aquatic/Wildlife diversity Explain: ______________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
Wetland Size (ac): ______________________
Wetland Type, Explain: ______________________
Wetland Quality, Explain: ______________________
Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: ______________________ Explain: ______________________
Surface Flow is: ______________________
Characteristics: ______________________
Subsurface Flow: ______________________ Explain Findings: ______________________

(c) Wetland Adjacency Determination with Non-TNW:
☐ Wetland Directly Abutting Non-TNW
☐ Wetland Not Directly Abutting Non-TNW
☐ Discrete wetland hydrologic connection Explain: ______________________
☐ Ecological connection Explain: ______________________
☐ Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW: ______________________
Project Wetlands: Aerial Miles from TNW: ______________________
Flow is From: ______________________
Estimate approximate Location of Wetland within Floodplain: ______________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gilspie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (Ft).

☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 112.32 linear feet, 2.95 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 169</th>
</tr>
</thead>
</table>

U.S Army Corps of Engineers

- **USDA Nat’l Res Conservation Service Soil Survey** | Citation: [Blank]
- **National Wetlands Inventory Maps** | Cite Map Name: [Blank]
- **State/Local Wetland Inventory Maps**
- **FEMA/FIRM Maps:**
 - 100-year Floodplain Elevation is: [Blank] (National Geodetic Vertical Datum of 1929)
 - Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations** | File No. and Date of Response Letter: [Blank]
- **Applicable/Supporting Case Law** | Citation: [Blank]
- **Applicable/Supporting Scientific Literature** | Citation: [Blank]

Other Information, Please Specify: [Blank]

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 17

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___________ Linear Feet ___________ Width (ft) and/or ___________ Acres
 Wetlands Acres: ___________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 9.40044
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
- [] Discontinuous? Explain:

Other (list):

Presence of litter and debris
Destruction of terrestrial vegetation
Presence of wrack line
Sediment sorting
Scour
Multiple observed or predicted flow events
Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
- Surface Flow is:
- Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

[] Riparian Buffer Characteristics (type, average width):

[] Vegetation type/percent cover. Explain:

Habitat for:

[] Federally Listed Species Explain:

[] Fish/Spawn Areas Explain:

[] Other environmentally-sensitive species Explain:

[] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary? size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 □ TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________

 □ Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 □ Tributary waters Linear Feet: __________ Width (Ft): __________

 □ Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: ________________________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: ________________________

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC.2.______________________

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______

☐ Other Non-wetland Waters MBR acres: ______

☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 5506.48 linear feet (ft), 20.84 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 17

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature
State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g, offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00434
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries. Explain:</td>
<td></td>
</tr>
</tbody>
</table>

Identify flow route to TNW

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Cobble
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- **OHWM (check all the apply): OHWM Indicators:**
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - **Presence of litter and debris**
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW:

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain:
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Option</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Option</th>
<th>Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
<td></td>
</tr>
<tr>
<td>Tributary waters Linear Feet: Width (Ft)</td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters: Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Option</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.</td>
<td></td>
</tr>
<tr>
<td>Provide estimates of jurisdictional waters within the review area (check all that apply):</td>
<td></td>
</tr>
<tr>
<td>Length (Linear Feet): Width (feet): Acres:</td>
<td></td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Option</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abutting an RPW and thus are jurisdictional as adjacent wetlands.</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td></td>
</tr>
</tbody>
</table>

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Option</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.</td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td></td>
</tr>
</tbody>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________
☐ Other Non-wetland Waters MBR acres: __________
☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), 577.73 width (ft) 4.41
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat'l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

□ Previous Determinations
□ Applicable/Supporting Case Law Citation:
□ Applicable/Supporting Scientific Literature Citation:
□ Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 171

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Name of nearest TraditionalNavigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00273
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✓ Tributary flows through ____ tributaries before entering TNW

 Project waters are ____ (or more) river miles from TNW

 Summarize rationale supporting determination:

 Summarize conclusion that a significant nexus exists for this tributary:

 Summarize rationale supporting conclusion that wetlands are "adjacent"
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TPW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation

Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Other (list):

Discontinuous? Explain:

Ephemeral Flow

2-5

2-5
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other
- Mean High water Mark indicated by:
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species
- Fish/Spawn Areas
- Other environmentally sensitive species
- Aquatic/Wildlife diversity

Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

- Properties:
 - Wetland Size (ac):
 - Wetland Type, Explain:
 - Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Surface Flow is:
 - Characteristics:
 - Subsurface Flow:

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection
 - Ecological connection
 - Separated by berm/barrier

Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):
☐ Vegetation type/percent cover. Explain:
Habitat for:
☐ Federally Listed Species Explain:
☐ Fish/Spawn Areas Explain:
☐ Other environmentally-sensitive species Explain:
☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Wetlands adjacent to TNWs

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- ✔ Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- ✔ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- ✔ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- ✔ US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 171

USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 172
 State: AZ
 County/Parish/borough: Pinal
 City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00188
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
Other (list):
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community
- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally-sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: []
- Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: ______ Width (ft): ______ TNW Acres: ______
 - Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ______ Width (Ft): ______
 - Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

Data supporting this conclusion is provided at Section III.C.
<table>
<thead>
<tr>
<th>Description</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey</td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: [National Geodetic Vertical Datum of 1929]</td>
<td></td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
<td></td>
</tr>
<tr>
<td>Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
<td></td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 173

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or Acres</th>
<th>Wetlands Acres</th>
</tr>
</thead>
</table>

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.83883
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 □ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are [] river Miles from tributary to RPW: []
Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW: []
Project waters are [] aerial (straight) miles from tributary to RPW: []
Project waters cross or serve as state boundaries. Explain: []
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River. []

(b) General Tributary Characteristics
Tributary is: Natural
Explain: []
Tributary properties with respect to top of bank (estimate):
Average Width (ft): []
Average Depth (ft): []
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
Other, Explain: []
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume: []
Surface Flow is: Discrete and Confined
Characteristics: []
Subsurface Flow: No
Explain: []
Dye (or other) test performed: []
Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
Other (list): []
Discontinuous? Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___________________________
- Wetland Fringe Characteristics: ___________________________

Habitat for:

- Federally Listed Species Explain findings: ___________________________
- Fish/Spawn Areas Explain findings: ___________________________
- Other environmentally sensitive species Explain findings: ________________
- Aquatic/Wildlife diversity Explain: ___________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ___________________________
- Wetland Type, Explain: ___________________________
- Wetland Quality, Explain: ___________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ___________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ___________________________

Surface Flow is: ___________________________

Characteristics: ___________________________

Subsurface Flow: ___________________________

Explain Findings: ___________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ___________________________
- Ecological connection Explain: ___________________________
- Separated by berm/barrier Explain: ___________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ___________________________

Project Wetlands: Aerial Miles from TNW: ___________________________

Flow is From: ___________________________

Estimate approximate Location of Wetland within Floodplain: ___________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: Width (ft): TNW Acres
 - [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (Ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): []

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: []

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: []

Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters []

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
- Other Non-wetland Waters MBR acres: []
- Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 1300.75 linear feet (ft), 8.02 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Check the box for the appropriate map source:

☐ USDA Nat'l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps

Enter the 100-year floodplain elevation (National Geodetic Vertical Datum of 1929):

☐ Aerial Photographs
☐ Other Photographs
☐ Previous Determinations
☐ Applicable/Supporting Case Law
☐ Applicable/Supporting Scientific Literature

Enter the names and dates of aerial photographs:

- Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- Ground Photos; June through July 2012, September through October 2012

Enter the name and date of response letter:

Enter the name and date of other information, please specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature
Name: 174

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ "Waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatice resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.07130
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 (or more)</td>
<td>30 (or more)</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>30 (or more)</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Explain:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identify flow route to TNW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.</td>
</tr>
</tbody>
</table>

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side slopes: 3:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary tributary substrate composition (check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si1ts</td>
</tr>
<tr>
<td>[] Sands</td>
</tr>
<tr>
<td>[] Concrete</td>
</tr>
<tr>
<td>[] Muck</td>
</tr>
<tr>
<td>[] Cobble</td>
</tr>
<tr>
<td>[] Gravel</td>
</tr>
<tr>
<td>[] Substrate - Vegetation</td>
</tr>
<tr>
<td>Other, Explain:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain: Not present.</td>
</tr>
<tr>
<td>Tributary Geometry: Relatively Straight</td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope): 1%</td>
</tr>
</tbody>
</table>

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for: Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate average number of flow events in review area/year: 2-5</td>
</tr>
<tr>
<td>Describe Flow Regime: Ephemeral.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Information on Duration and Volume:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Surface Flow is: Discrete and Confined Characteristics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsurface Flow: No Explain:</td>
</tr>
<tr>
<td>[] Dye (or other) test performed:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Has (Check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Bed and Banks</td>
</tr>
<tr>
<td>[] OHWM (check all the apply):</td>
</tr>
<tr>
<td>OHWM Indicators:</td>
</tr>
<tr>
<td>Clear, natural line impressed on the bank</td>
</tr>
<tr>
<td>Changes in soil character</td>
</tr>
<tr>
<td>Shelving</td>
</tr>
<tr>
<td>Vegetation matted down, bent or absent</td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
</tr>
<tr>
<td>Sediment deposition</td>
</tr>
<tr>
<td>Water staining</td>
</tr>
<tr>
<td>Other (list):</td>
</tr>
<tr>
<td>Presence of litter and debris</td>
</tr>
<tr>
<td>Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>Presence of wrack line</td>
</tr>
<tr>
<td>Sediment sorting</td>
</tr>
<tr>
<td>Scour</td>
</tr>
<tr>
<td>Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>Abrupt change in plant community</td>
</tr>
<tr>
<td>Discontinuous? Explain:</td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by:
- [] Oil or scum line along shore objects
- [] Fine shell or debris deposits (foreshore)
- [] Physical markings/characteristics
- [] Tidal gauges
- [] Other

- [] Mean High water Mark indicated by:
- [] Survey to available datum
- [] Physical markings
- [] Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(explain findings)

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Wetland Fringe Characteristics:

Habitat for:

- [] Federally Listed Species Explain findings:
- [] Fish/Spawn Areas Explain findings:
- [] Other environmentally-sensitive species Explain findings:
- [] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is:

Explain:

Surface Flow is:

Characteristics:

Subsurface Flow:

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain:

Ecological connection Explain:

Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:
- Habitat for:
 - □ Federally Listed Species Explain:
 - □ Fish/Spawn Areas Explain:
 - □ Other environmentally-sensitive species Explain:
 - □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: [] Width (ft): [] TNW Acres []
 - Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: [] Width (Ft): []
 - Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
- [] Other Non-wetland Waters MBR: acres: []
- [] Wetlands MBR: acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters: 819.88 linear feet (ft), 13.84 width (ft)
- [] Other waters: [] acres
- [] Wetlands: [] acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s): Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 174

USDA Nat’l Res Conservation Service Soil Survey	Citation:
National Wetlands Inventory Maps	Cite Map Name:
State/Local Wetland Inventory Maps	
FEMA/FIRM Maps	
100-year Floodplain Elevation is:	(National Geodetic Vertical Datum of 1929)

- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012

| Previous Determinations | File No. and Date of Response Letter: |
| Applicable/Supporting Case Law Citation: |
| Applicable/Supporting Scientific Literature Citation: |

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 175

- **State:** AZ
- **County/Parish/borough:** Pinal County
- **City:** N/A

- Center coordinates of site:
 - Lat.: 32.8482°N
 - Long.: -111.2599°W

- Name of nearest waterbody:
 - Gila River between Powers Butte and Gillespie Dam

- Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 - Gila River between Powers Butte and Gillespie Dam

- Name of watershed or Hydrologic Unit Code (HUC):
 - 15050100

- Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

- There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- Waters subject to the ebb and flow of the tide.

- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

- There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

 1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 - Non-Wetlands waters: Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):

 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.13689
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through _______ tributaries before entering TNW
 Project waters are _______ river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Sands
- Concrete
- Gravel
- Bedrock
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain:]
- Stable.

Presence of Run/Riffle/Pool Complexes. Explain:
- Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope):
- 1%

(c) Flow:

Tributary Provides for:
- Ephemeral Flow

Estimate average number of flow events in review area/year:
- 2-5

Describe Flow Regime:
- Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
- Discrete and Confined

Subsurface Flow:
- No

Dye (or other) test performed:
- Explain:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________
- Mean High water Mark indicated by: ____________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________

Identify Specific Pollutants, if known: ____________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________
- Wetland Fringe Characteristics: ____________

Habitat for:

- Federally Listed Species Explain findings: ____________
- Fish/Spawn Areas Explain findings: ____________
- Other environmentally sensitive species Explain findings: ____________
- Aquatic/Wildlife diversity Explain: ____________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________
- Wetland Type, Explain: ____________
- Wetland Quality, Explain: ____________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________ Explain: ____________
- Surface Flow is: ____________

- Characteristics: ____________

- Subsurface Flow: ____________ Explain Findings: ____________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ____________
- Ecological connection Explain: ____________
- Separated by berm/barrier Explain: ____________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________

Project Wetlands: Aerial Miles from TNW: ____________

Flow is From: ____________

Estimate approximate Location of Wetland within Floodplain: ____________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands.

- Check all that apply and provide size estimates in review area:
 - TNWs
 - Width (ft):
 - TNW Acres
 - Wetlands adjacent to TNWs:
 - Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Linear Feet:
 - Width (Ft):
 - Other non-wetland waters:
 - Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area:
 - Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area:
 - Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ________ Acres: ________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ________ width (ft): ________
☐ Other Non-wetland Waters MBR acres: ________
☐ Wetlands MBR acres: ________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 1095.97 linear feet (ft), 7.99 width (ft)
☐ Other waters _____ acres
☐ Wetlands _____ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 175</th>
</tr>
</thead>
</table>

- **USDA Nat’l Res Conservation Service Soil Survey**
 - Citation:
 - Cite Map Name:

- **National Wetlands Inventory Maps**
 - Cite Map Name:

- **State/Local Wetland Inventory Maps**
 - Cite Map Name:

- **FEMA/FIRM Maps**
 - Cite Map Name:

- **100-year Floodplain Elevation**
 - National Geodetic Vertical Datum of 1929
 - Aerial Photographs
 - Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - Other Photographs
 - Name and Date: Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 - File No. and Date of Response Letter:

- **Applicable/Supporting Case Law**
 - Citation:

- **Applicable/Supporting Scientific Literature**
 - Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 176

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICATION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICATION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ______ Linear Feet ______ Width (ft) and/or ______ Acres
 Wetlands Acres: ______

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: [] Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.03969
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 [] Tributary flows directly to TNW
 [] Tributary flows through [] tributaries before entering TNW

 Project waters are [] river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [x] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined
Characteristics:
Subsurface Flow: No
Explain:
Dye (or other) test performed:

Tributary Has (Check all that apply):
- [x] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [x] Shelving
 - [x] Vegetation matted down, bent or absent
 - [x] Leaf litter disturbed or washed away
 - [x] Sediment deposition
 - [x] Water staining
 Other (list):
- [] Discontinuous? Explain:
- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [x] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community
- [] Other (list):
- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

☐ High tide line indicated by: ____________________________ ☐ Mean High water Mark indicated by: ____________________________
☐ oil or scum line along shore objects ☐ survey to available datum
☐ fine shell or debris deposits (foreshore) ☐ physical markings
☐ physical markings/characteristics ☐ vegetation lines/changes in vegetation types
☐ tidal gauges
☐ other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

☐ Riparian Corridor Characteristics: ____________________________
☐ Wetland Fringe Characteristics: ____________________________

Habitat for:

☐ Federally Listed Species Explain findings: ____________________________
☐ Fish/Spawn Areas Explain findings: ____________________________
☐ Other environmentally-sensitive species Explain findings: ____________________________
☐ Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): ____________________________

Wetland Type, Explain: ____________________________

Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

☐ Wetland Directly Abutting Non-TNW

☐ Wetland Not Directly Abutting Non-TNW

☐ Discrete wetland hydrologic connection Explain: ____________________________

☐ Ecological connection Explain: ____________________________

☐ Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:
☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 ☐ TNWs Linear Feet: Width (ft): TNW Acres
 ☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 ☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 ☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 ☐ Tributary waters Linear Feet: Width (Ft).
 ☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 ☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 ☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 ☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 ☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 ☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON‐JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non‐Jurisdictional Waters

Provide acreage estimates for non‐jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland‐Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non‐wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non‐jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non‐wetland waters 575.82 linear feet (ft), 9.16 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles
Feature ID: 176

USDA Nat’l Res Conservation Service Soil Survey

Citation: []

National Wetlands Inventory Maps

Cite Map Name: []

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

[] 100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 177

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 □ TNWs (new)
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS
A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01017
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
- Stable.

Presence of Run/Riffle/Pool Complexes. Explain:
- Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope):
- 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year:
- 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Subsurface Flow:
- No

Dye (or other) test performed:
- Explain:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [(] High tide line indicated by: __________________________
- [(] oil or scum line along shore objects
- [(] fine shell or debris deposits (foreshore)
- [(] physical markings/characteristics
- [(] tidal gauges
- [(] other

- [(] Mean High water Mark indicated by: __________________________
- [(] survey to available datum
- [(] physical markings
- [(] vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [(] Riparian Corridor Characteristics: __________________________

Habitat for:

- [(] Federally Listed Species Explain findings: __________________________
- [(] Fish/Spawn Areas Explain findings: __________________________
- [(] Other environmentally-sensitive species Explain findings: __________________________
- [(] Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): __________________________

Wetland Type, Explain: __________________________

Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________ Explain: __________________________

Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________ Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- [(] Wetland Directly Abutting Non-TNW
- [(] Wetland Not Directly Abutting Non-TNW

- [(] Discrete wetland hydrologic connection Explain: __________________________
- [(] Ecological connection Explain: __________________________
- [(] Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
 - Linear Feet:
 - Width (ft):
 - TNW Acres
- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - Linear Feet:
 - Width (ft):
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ________ Acres: ________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ________ width (ft): ________
☐ Other Non-wetland Waters MBR acres: ________
☐ Wetlands MBR acres: ________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters acres
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 177

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 178

State: AZ County/Parish/borough: Pinal County City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________

 □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi):</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi):</td>
<td>0.06171</td>
</tr>
<tr>
<td>Average Annual Rainfall (in):</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in):</td>
<td>0</td>
</tr>
</tbody>
</table>

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

- Tributary is: Natural
- Tributary properties with respect to top of bank (estimate):
 - Average Width (ft):
 - Average Depth (ft):
 - Average Side Slopes: 3:1
- Primary tributary substrate composition (check all that apply):
 - Silts
 - Cobble
 - Bedrock
 - Sands
 - Concrete
 - Muck
 - Gravel
 - Substrate - Vegetation
 - Other, Explain:
- Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
- Presence of Run/Riffle/Pool Complexes. Explain: Not present.
- Tributary Geometry: Relatively Straight
- Tributary Gradient (approximate average slope): 1%

(c) Flow:

- Tributary Provides for: Ephemeral Flow
- Estimate average number of flow events in review area/year: 2-5
- Describe Flow Regime: Ephemeral.
- Other Information on Duration and Volume:
- Surface Flow is: Discrete and Confined
- Characteristics:
- Subsurface Flow: No
- Explain:
- Dye (or other) test performed:

- Tributary Has (Check all that apply):
 - Bed and Banks
 - OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):
 - Discontinuous? Explain:
2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow: Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: Width (ft): TNW Acres
- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (Ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 634.45 linear feet (ft), 6.07 width (ft) acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
LIST OF JURISDICTIONAL DETERMINATION FORMS

U.S. Army Corps of Engineers

Feature ID: 178

☐ USDA Nat’l Res Conservation Service Soil Survey
 Citation:

☐ National Wetlands Inventory Maps
 Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is:
 (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs
 (Name and Date):
 Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs
 (Name and Date):
 Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
 File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law
 Citation:

☐ Applicable/Supporting Scientific Literature
 Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 179

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICATION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters __________ Linear Feet Width (ft) and/or __________ Acres

 Wetlands Acres: __________

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW: ______________________☐ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 Watershed Size (sq mi): 49650

 Drainage Area (sq mi): 0.00483

 Average Annual Rainfall (in): 10

 Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 ☐ Tributary flows directly to TNW

 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft): —
Average Depth (ft): —
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
☐ Silts
☐ Sands
☐ Concrete
☐ Muck
☐ Cobbles
☐ Gravel
☐ Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
☐ Clear, natural line impressed on the bank
☐ Changes in soil character
☐ Shelving
☐ Vegetation matted down, bent or absent
☐ Leaf litter disturbed or washed away
☐ Sediment deposition
☐ Water staining
Other (list):

☐ Discontinuous? Explain:
(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

Habitat for:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width): [space for input]
- [] Vegetation type/percent cover. Explain: [space for input]

Habitat for:
- [] Federally Listed Species Explain: [space for input]
- [] Fish/Spawn Areas Explain: [space for input]
- [] Other environmentally-sensitive species Explain: [space for input]
- [] Aquatic/Wildlife Diversity Explain: [space for input]

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis: [space for input]

Wetland acres in total being considered in cumulative analysis: [space for input]

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th></th>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
</tr>
<tr>
<td></td>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
</tr>
<tr>
<td></td>
<td>Tributary waters Linear Feet: Width (ft):</td>
</tr>
<tr>
<td></td>
<td>Other non-wetland waters: Acres:</td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th></th>
<th>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length (Linear Feet): Width (feet): Acres:</td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th></th>
<th>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
</tr>
<tr>
<td></td>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW</td>
</tr>
<tr>
<td></td>
<td>Provide acreage estimates for jurisdictional wetland in the review area: Acres:</td>
</tr>
</tbody>
</table>

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| | Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________
☐ Other Non-wetland Waters MBR acres: __________
☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 532.52 linear feet (ft), 4.91 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 179

☐ USDA Nat'l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N
Long. -111.2599”W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g, offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04048
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Average Width (ft):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Depth (ft):</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- Silts
- Cobble
- Sands
- Concrete
- Gravel
- Muck
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
</table>

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Other (list): Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

<table>
<thead>
<tr>
<th>Other (list):</th>
<th></th>
</tr>
</thead>
</table>

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

☐ High tide line indicated by: ___________________________ ☐ Mean High water Mark indicated by: ___________________________
☐ oil or scum line along shore objects ☐ survey to available datum
☐ fine shell or debris deposits (foreshore) ☐ physical markings
☐ physical markings/characteristics ☐ vegetation lines/changes in vegetation types
☐ tidal gauges
☐ other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: ___________________________
Identify Specific Pollutants, if known: ___________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

☐ Riparian Corridor Characteristics: ___________________________
☐ Wetland Fringe Characteristics: ___________________________

Habitat for:
☐ Federally Listed Species Explain findings: ___________________________
☐ Fish/Spawn Areas Explain findings: ___________________________
☐ Other environmentally-sensitive species Explain findings: ___________________________
☐ Aquatic/Wildlife diversity Explain: ___________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
 (a) General Wetland Characteristics
 Properties:
 Wetland Size (ac): ___________________________
 Wetland Type, Explain: ___________________________
 Wetland Quality, Explain: ___________________________
 Project Wetlands Cross or Serve as State Boundaries, Explain: ___________________________

 (b) General Flow Relationship with Non-TNW:
 Wetland Flow is: ___________________________ Explain: ___________________________
 Surface Flow is: ___________________________
 Characteristics: ___________________________
 Subsurface Flow: ___________________________ Explain Findings: ___________________________

 (c) Wetland Adjacency Determination with Non-TNW:
 ☐ Wetland Directly Abutting Non-TNW
 ☐ Wetland Not Directly Abutting Non-TNW
 ☐ Discrete wetland hydrologic connection Explain: ___________________________
 ☐ Ecological connection Explain: ___________________________
 ☐ Separated by berm/barrier Explain: ___________________________

 (d) Proximity (Relationship) to TNW
 Project Wetlands: River Miles from TNW: ___________________________
 Project Wetlands: Aerial Miles from TNW: ___________________________
 Flow is From: ___________________________
 Estimate approximate Location of Wetland within Floodplain: ___________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- ☐ Riparian Buffer Characteristics (type, average width):
- ☐ Vegetation type/percent cover. Explain:

Habitat for:

- ☐ Federally Listed Species Explain:
- ☐ Fish/Spawn Areas Explain:
- ☐ Other environmentally-sensitive species Explain:
- ☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: ____________ Width (ft): ________ TNW Acres ________

☐ Wetlands adjacent to TNWs: Acres: ________

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ________

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ________

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: ____________ Width (Ft): ________ Acres: ________

☐ Other non-wetland waters: Acres: ________

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): ________ Width (feet): ________ Acres: ________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ________

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ________

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):
Feature ID: 18

USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 180
 State: AZ County/Parish/borough: Pinal City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.36711
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary tributary substrate composition (check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Silts</td>
</tr>
<tr>
<td>Check Gravel</td>
</tr>
<tr>
<td>Check Substrate - Vegetation</td>
</tr>
<tr>
<td>Check Other, Explain:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Presence of Run/Riffle/Pool Complexes. Explain: Not present.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary Geometry:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatively Straight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Gradient (approximate average slope):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
</tr>
</tbody>
</table>

(c) Flow

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeral Flow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate average number of flow events in review area/year:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Describe Flow Regime:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeral.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Information on Duration and Volume:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete and Confined</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsurface Flow:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dye (or other) test performed:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Has (Check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed and Banks</td>
</tr>
<tr>
<td>Check OHWM (check all the apply): OHWM Indicators:</td>
</tr>
<tr>
<td>Clear, natural line impressed on the bank</td>
</tr>
<tr>
<td>Check Changes in soil character</td>
</tr>
<tr>
<td>Shelving</td>
</tr>
<tr>
<td>Vegetation matted down, bent or absent</td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
</tr>
<tr>
<td>Sediment deposition</td>
</tr>
<tr>
<td>Water staining</td>
</tr>
<tr>
<td>Check Presence of litter and debris</td>
</tr>
<tr>
<td>Check Presence of wrack line</td>
</tr>
<tr>
<td>Sediment sorting</td>
</tr>
<tr>
<td>Scour</td>
</tr>
<tr>
<td>Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>Abrupt change in plant community</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Other (list):</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discontinuous?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain:

Ecological connection Explain:

Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:
- [] Habitat for:
 - [] Federally Listed Species Explain:
 - [] Fish/Spawn Areas Explain:
 - [] Other environmentally-sensitive species Explain:
 - [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all of its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs
- Linear Feet: __________________ Width (ft): _______ TNW Acres _______
- Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________________
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: _______ Width (ft): _______
 - Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 2146.30 linear feet (ft), 12.22 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles
<table>
<thead>
<tr>
<th>APPROVED JURISDICTIONAL DETERMINATION FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S Army Corps of Engineers</td>
</tr>
<tr>
<td>Feature ID: 180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
</tr>
<tr>
<td>☐</td>
<td>National Wetlands Inventory Maps</td>
</tr>
<tr>
<td>☐</td>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>☐</td>
<td>FEMA/FIRM Maps</td>
</tr>
<tr>
<td>☑</td>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>☑</td>
<td>Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>☑</td>
<td>Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>☐</td>
<td>Previous Determinations File No. and Date of Response Letter</td>
</tr>
<tr>
<td>☐</td>
<td>Applicable/Supporting Case Law Citation</td>
</tr>
<tr>
<td>☐</td>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td></td>
<td>Other Information, Please Specify:</td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 181

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are are/are potential jurisdical areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination.
Date:

☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No ("navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No ("waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00885
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

Feature ID: 181

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
</tbody>
</table>

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:] Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Discontinuous? Explain:

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: _____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ______________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ______________________
- Wetland Fringe Characteristics: ______________________

Habitat for:

- Federally Listed Species Explain findings: ______________________
- Fish/Spawn Areas Explain findings: ______________________
- Other environmentally-sensitive species Explain findings: ______________________
- Aquatic/Wildlife diversity Explain: ______________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): ______________________
- Wetland Type, Explain: ______________________
- Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ______________________ Explain: ______________________

Surface Flow is: ______________________

Characteristics: ______________________

Subsurface Flow: ______________________ Explain Findings: ______________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ______________________
 - Ecological connection Explain: ______________________
 - Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ______________________

Project Wetlands: Aerial Miles from TNW: ______________________

Flow is From: ______________________

Estimate approximate Location of Wetland within Floodplain: ______________________
(ii) **Chemical Characteristics:**

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Explain

Identify specific pollutants, if know:

(iii) **Biological Characteristics. Wetland supports (check all that apply):**

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:

Habitat for:
- □ Federally Listed Species Explain:
- □ Fish/Spawn Areas Explain:
- □ Other environmentally-sensitive species Explain:
- □ Aquatic/Wildlife Diversity Explain:

3. **Characteristics of all wetlands adjacent to the tributary (if any)**

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. **SIGNIFICANT NEXUS DETERMINATION**

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.**

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: Width (ft): TNW Acres
 - [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (Ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters: 328.88 linear feet (ft), 4.92 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

- [] Office Concurs with data sheets/delineation report
- [] Office Does Not Concur with data sheets/delineation report

- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas

- [] USGS NHD Data
- [] USGS 8 and 12 digit HUC Maps

- [] US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 181

☐ USDA Nat'l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 182

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. \(32.8482^\circ N\) Long. \(-111.2599^\circ W\)

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
✓ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all that apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
✓ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**

 (i) **General Area Conditions:**

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00803
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TO:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

[] Dye (or other) test performed:

Tributary Has (Check all that apply):

[] Bed and Banks
[] OHWM (check all the apply): OHWM Indicators:
- [] Clear, natural line impressed on the bank
- [] Changes in soil character
- [] Shelving
- [] Vegetation matted down, bent or absent
- [] Leaf litter disturbed or washed away
- [] Sediment deposition
- [] Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):

[] Discontinuous? Explain:

Feature ID: 182
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ______________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:
- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally -sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________
- Explain: ____________________________
- Surface Flow is: ____________________________
- Characteristics: ____________________________
- Subsurface Flow: ____________________________
- Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________________________
 - Ecological connection Explain: ____________________________
 - Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________________
- Project Wetlands: Aerial Miles from TNW: ____________________________
- Flow is From: ____________________________
- Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th></th>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
</tr>
</tbody>
</table>

Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th></th>
<th>Tributary waters</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Other non-wetland waters:</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th></th>
<th>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):</th>
</tr>
</thead>
</table>

Length (Linear Feet): | Width (feet): | Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th></th>
<th>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| | Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): _______________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: _______________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______________ Acres: _______________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______________ width (ft): _______________

☐ Other Non-wetland Waters MBR acres: _______________

☐ Wetlands MBR acres: _______________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 453.87 linear feet (ft), 4.82 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navgable Water Study

☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 182

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ___________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 183

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatice resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland, the determination of whether or not the standards for jurisdiction established under Rapanos have been met requires a significant nexus evaluation.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary adjacent to wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.02963
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 - ☑ Tributary flows directly to TNW
 - ☐ Tributary flows through _____ tributaries before entering TNW
 - Project waters are _____ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

[] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

[] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally -sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ____________________________
- Ecological connection Explain: ____________________________
- Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - **TNWs**
 - Linear Feet: _____ Width (ft): _____ TNW Acres: _____
 - Wetlands adjacent to TNWs: Acres: _____

2. **RPWs that flow directly or indirectly into TNWs**

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _____
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _____
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: _____ Width (ft): _____ Acres: _____
 - Other non-wetland waters: Acres: _____

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): _____ Width (feet): _____ Acres: _____

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _____
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _____
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _____

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _____

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft):
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 183

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ____________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 184

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona (AZ)</td>
<td>Pinal County</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Center coordinates of site:
Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW:
 □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00518
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 184

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries. Explain:</td>
<td></td>
</tr>
</tbody>
</table>

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary tributary substrate composition (check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Silts</td>
</tr>
<tr>
<td>☑ Cobbles</td>
</tr>
<tr>
<td>☑ Bedrock</td>
</tr>
<tr>
<td>☑ Sands</td>
</tr>
<tr>
<td>☑ Concrete</td>
</tr>
<tr>
<td>☑ Muck</td>
</tr>
<tr>
<td>☑ Gravel</td>
</tr>
<tr>
<td>☑ Substrate - Vegetation</td>
</tr>
<tr>
<td>Other, Explain:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presence of Run/Riffle/Pool Complexes. Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not present.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Geometry:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatively Straight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Gradient (approximate average slope):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
</tr>
</tbody>
</table>

Flow

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeral Flow</td>
</tr>
</tbody>
</table>

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete and Confined</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsurface Flow:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dye (or other) test performed:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary Has (Check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Bed and Banks</td>
</tr>
<tr>
<td>☑ OHWM (check all the apply): OHWM Indicators:</td>
</tr>
<tr>
<td>☑ Clear, natural line impressed on the bank</td>
</tr>
<tr>
<td>☑ Changes in soil character</td>
</tr>
<tr>
<td>☑ Shelving</td>
</tr>
<tr>
<td>☑ Vegetation matted down, bent or absent</td>
</tr>
<tr>
<td>☑ Leaf litter disturbed or washed away</td>
</tr>
<tr>
<td>☑ Sediment deposition</td>
</tr>
<tr>
<td>☑ Water staining</td>
</tr>
<tr>
<td>Presence of litter and debris</td>
</tr>
<tr>
<td>Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>Presence of wrack line</td>
</tr>
<tr>
<td>Sediment sorting</td>
</tr>
<tr>
<td>Scour</td>
</tr>
<tr>
<td>Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>Abrupt change in plant community</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other (list):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Discontinuous?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain:</td>
</tr>
</tbody>
</table>

Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain:

Identify Specific Pollutants, if known:

- Explain:

Biological Characteristics

Channel supports (check all that apply):

- Riparian Corridor Characteristics:

- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:

- Fish/Spawn Areas Explain findings:

- Other environmentally-sensitive species Explain findings:

- Aquatic/Wildlife diversity Explain:

Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

Physical Characteristics:

(a) **General Wetland Characteristics**

- Properties:
 - Wetland Size (ac):
 - Wetland Type, Explain:
 - Wetland Quality, Explain:

- Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) **General Flow Relationship with Non-TNW:**

- Wetland Flow is: Explain:

- Surface Flow is: Characteristics:

- Subsurface Flow: Explain Findings:

(c) **Wetland Adjacency Determination with Non-TNW:**

- Wetland Directly Abutting Non-TNW

- Wetland Not Directly Abutting Non-TNW

 - Discrete wetland hydrologic connection Explain:

 - Ecological connection Explain:

 - Separated by berm/barrier Explain:

(d) **Proximity (Relationship) to TNW**

- Project Wetlands: River Miles from TNW:

- Project Wetlands: Aerial Miles from TNW:

- Flow is From:

- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 ☐ TNWs Linear Feet: Width (ft): TNW Acres

 ☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 ☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 ☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 ☐ Tributary waters Linear Feet: Width (ft).

 ☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 ☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at Section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 ☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 ☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 ☐ Wetlands directly abutting an RPW where tributaries typically flow "seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 ☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [x] Non-wetland waters linear feet (ft), width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [x] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [x] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [x] US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 184

USDA Nat'l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs
 (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs
 (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations
File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 185

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.00570 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are [] river Miles from tributary to RPW: Explain:
Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW: Explain:
Project waters are [] aerial (straight) miles from tributary to RPW: Explain:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
- Stable.

Presence of Run/Riffle/Pool Complexes. Explain:
- Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope):
- 1%

(c) Flow:

Tributary Provides for:
- Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime:
- Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
- Discrete and Confined

Characteristics:

Subsurface Flow:
- No

Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

- Mean High water Mark indicated by: __________________________
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally-sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: __________________________ Explain: __________________________
- Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________ Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: __________________________
- Ecological connection Explain: __________________________
- Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: ___________ Width (ft): ___________ TNW Acres ___________
- [] Wetlands adjacent to TNWs: Acres: ___________

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ___________
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ___________

Provide estimates for jurisdictional waters in the review area (check all that apply):

- [] Tributary waters Linear Feet: ___________ Width (Ft): ___________
- [] Other non-wetland waters: Acres: ___________

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): ___________ Width (feet): ___________ Acres: ___________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ___________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ___________

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 445.64 linear feet (ft), 3.94 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 185</th>
</tr>
</thead>
</table>

| USDA Nat'l Res Conservation Service Soil Survey | Citation: |
| National Wetlands Inventory Maps | Cite Map Name: |
| State/Local Wetland Inventory Maps |
| FEMA/FIRM Maps: |
| 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929) |

| Aerial Photographs | (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011 |
| Other Photographs | (Name and Date): Ground Photos; June through July 2012, September through October 2012 |

| Previous Determinations | File No. and Date of Response Letter: |
| Applicable/Supporting Case Law Citation: |
| Applicable/Supporting Scientific Literature Citation: |
| Other Information, Please Specify: |

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 186

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: __________
 - ☐ Vegetation

Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions**:

 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.82629
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics**:

 (a) **Relationship with TNW**

 - ☐ Tributary flows directly to TNW
 - ✔ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Average Width (ft):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Depth (ft):</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [x] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Characteristics:

Subsurface Flow: No

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous? Explain:

Dye (or other) test performed:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High Water Mark indicated by: ______________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ______________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ______________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: ______________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: __________________________
- Explain:
- Surface Flow is: __________________________

Characteristics: __________________________

- Subsurface Flow: __________________________
- Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: __________________________
- Project Wetlands: Aerial Miles from TNW: __________________________
- Flow is From: __________________________
- Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - □ TNWs Linear Feet: Width (ft): TNW Acres
 - □ Wetlands adjacent to TNWs: Acres:

2. **RPWs that flow directly or indirectly into TNWs**
 - □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - □ Tributary waters Linear Feet: Width (Ft).
 - □ Other non-wetland waters: Acres:

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - □ Wetlands directly abutting an RPW where tributaries typically flow "seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 2477.22 linear feet (ft), 7.87 width (ft)
☐ Other waters
☐ Wetlands

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 186

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 187

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat.: 32.8482°N
Long.: -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination.
Date:

☑ Field Determination.
Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (intrastate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02996
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:
 - Characteristics:
 - Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:

Habitat for:
- □ Federally Listed Species Explain:
- □ Fish/Spawn Areas Explain:
- □ Other environmentally-sensitive species Explain:
- □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: Width (Ft):
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft):

☐ Other waters acres:

☐ Wetlands acres:

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat’l Res Conservation Service Soil Survey
□ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ___________________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:
Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 188

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**
 - **(i) General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.01025
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - **(ii) Physical Characteristics:**
 - **(a) Relationship with TNW**
 - ☑ Tributary flows directly to TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural
Explain:

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes:</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain: _Stable._

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain:] Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Describe Flow Regime: Ephemeral.

<table>
<thead>
<tr>
<th>Other Information on Duration and Volume:</th>
</tr>
</thead>
</table>

Estimate average number of flow events in review area/year: 2-5

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list):

Discontinuous?
Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________ Explain: ____________________________
- Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________________________
 - Ecological connection Explain: ____________________________
 - Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________________
- Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain: __

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width): __
- Vegetation type/percent cover. Explain: __

Habitat for:
- Federally Listed Species Explain: __
- Fish/Spawn Areas Explain: __
- Other environmentally-sensitive species Explain: __
- Aquatic/Wildlife Diversity Explain: __

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis: __

Wetland acres in total being considered in cumulative analysis: __

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th></th>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictonal. Provide data and Rationale indicating that tributary is perennial:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictonal. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
</tr>
<tr>
<td></td>
<td>Provide estimates for jurisdictonal waters in the review area (check all that apply):</td>
</tr>
<tr>
<td></td>
<td>Tributary waters Linear Feet: Width (Ft).</td>
</tr>
<tr>
<td></td>
<td>Other non-wetland waters: Acres:</td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

	Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictonal. Data supporting this conclusion provided at section III.c.
	Provide estimates of jurisdictonal waters within the review area (check all that apply):
	Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

	Wetlands directly abut RPW and thus are jurisdictonal as adjacent wetlands.
	Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
	Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
	Provide acreage estimates for jurisdictonal wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| | Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictonal. Data supporting this conclusion is provided at Section III.C. |
| | Provide acreage estimates for jurisdictonal wetland in the review area: Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Wetlands acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 188</th>
</tr>
</thead>
</table>

USDA Nat’l Res Conservation Service Soil Survey	Citation:
National Wetlands Inventory Maps	Cite Map Name:
State/Local Wetland Inventory Maps	
FEMA/FIRM Maps:	
100-year Floodplain Elevation is:	(National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 189

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

□ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW: []

 □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a TNW, determination of whether or not the standards for jurisdiction established under Rapanos have been met is determined in Section III.C below.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.00299 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 □ Tributary flows directly to TNW

 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are 30 (or more) river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are 30 (or more) aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobbles
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined
Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
- Other (list):
- Discontinuous? Explain:

Feature ID: 189

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __________________________
Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________
Habitat for:
- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally -sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
 (a) General Wetland Characteristics
 Properties:
 - Wetland Size (ac): __________________________
 - Wetland Type, Explain: __________________________
 - Wetland Quality, Explain: __________________________
 Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

 (b) General Flow Relationship with Non-TNW:
 Wetland Flow is: __________________________ Explain: __________________________
 Surface Flow is: __________________________
 Characteristics: __________________________
 Subsurface Flow: __________________________ Explain Findings: __________________________

 (c) Wetland Adjacency Determination with Non-TNW:
 - Wetland Directly Abutting Non-TNW
 - Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________________________
 - Ecological connection Explain: __________________________
 - Separated by berm/barrier Explain: __________________________

 (d) Proximity (Relationship) to TNW
 Project Wetlands: River Miles from TNW: __________________________
 Project Wetlands: Aerial Miles from TNW: __________________________
 Flow is From: __________________________
 Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:
Habitat for:
- □ Federally Listed Species Explain:
- □ Fish/Spawn Areas Explain:
- □ Other environmentally-sensitive species Explain:
- □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: _______ Width (ft): _______ TNW Acres _______

☐ Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: _______ Width (ft): _______

☐ Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply): Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 189

U.S. Army Corps of Engineers

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 277.43 linear feet (ft), 4.40 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ___________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 19

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc.) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☒ TNWs (new)
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres

 Wetlands Acres: _______

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ______________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02718
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 □ Tributary flows through _______ tributaries before entering TNW

 Project waters are _______ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [x] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [x] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Security [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Describe other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [x] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ______________________ Mean High water Mark indicated by: ______________________
 - oil or scum line along shore objects - survey to available datum
 - fine shell or debris deposits (foreshore) - physical markings
 - physical markings/characteristics - vegetation lines/changes in vegetation types
 - tidal gauges
 - other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ______________________

Identify Specific Pollutants, if known: ______________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ______________________
- Wetland Fringe Characteristics: ______________________

Habitat for:

- Federally Listed Species Explain findings: ______________________
- Fish/Spawn Areas Explain findings: ______________________
- Other environmentally -sensitive species Explain findings: ______________________
- Aquatic/Wildlife diversity Explain: ______________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ______________________
- Wetland Type, Explain: ______________________
- Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ______________________ Explain: ______________________

Surface Flow is: ______________________

Characteristics: ______________________

Subsurface Flow: ______________________ Explain Findings: ______________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ______________________
 - Ecological connection Explain: ______________________
 - Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ______________________

Project Wetlands: Aerial Miles from TNW: ______________________

Flow is From: ______________________

Estimate approximate Location of Wetland within Floodplain: ______________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs: Linear Feet: __________ Width (ft): __________ TNW Acres __________
- Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: Linear Feet: __________ Width (Ft): __________ Acres: __________
- Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 1190.50 linear feet (ft), 7.51 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 19

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 190
 State: AZ Count/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS
A. TNWs AND WETLANDS ADJACENT TO TNWs
The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: __ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)
This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.14774
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

Project waters are
- river Miles from tributary to RPW: []
- Project waters are 30 (or more) aerial (straight) miles from tributary to TNW: []
- Project waters are aerial (straight) miles from tributary to RPW: []

Project waters cross or serve as state boundaries. Explain: []

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain: []

Tributary properties with respect to top of bank (estimate):
- Average Width (ft): []
- Average Depth (ft): []
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:] Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain: []

[] Dye (or other) test performed: []

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

Other (list): []

[] Discontinuous? Explain: []

Explain:
- Tributary is: Natural
- Averag ge Width (ft):
- Average Depth (ft):
- 3:1
- Silts Sands Concrete Cobbles Gravel Muck Bedrock Other,
- Explain: Stable.
- Presence of Run/Riffle/Pool Complexes. Explain: Not present.
- Tributary Geometry: Relatively Straight
- Tributary Gradient (approximate average slope): 1%
- Primary tributary substrate composition (check all that apply):
 - Silts
 - Sands
 - Concrete
 - Muck
 - Cobbles
 - Gravel
 - Substrate - Vegetation
 - Other, Explain: Stable.
- Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
- Presence of Run/Riffle/Pool Complexes. Explain: Not present.
- Tributary Geometry: Relatively Straight
- Tributary Gradient (approximate average slope): 1%
- (b) General Tributary Characteristics
- Tributary is: Natural Explain: []
- Tributary properties with respect to top of bank (estimate): Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1
- Primary tributary substrate composition (check all that apply):
 - Silts
 - Sands
 - Concrete
 - Muck
 - Cobbles
 - Gravel
 - Substrate - Vegetation
 - Other, Explain: Stable.
- Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
- Presence of Run/Riffle/Pool Complexes. Explain: Not present.
- Tributary Geometry: Relatively Straight
- Tributary Gradient (approximate average slope): 1%
- Primary tributary substrate composition (check all that apply):
 - Silts
 - Sands
 - Concrete
 - Muck
 - Cobbles
 - Gravel
 - Substrate - Vegetation
 - Other, Explain: Stable.
- Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
- Presence of Run/Riffle/Pool Complexes. Explain: Not present.
- Tributary Geometry: Relatively Straight
- Tributary Gradient (approximate average slope): 1%
- Primary tributary substrate composition (check all that apply):
 - Silts
 - Sands
 - Concrete
 - Muck
 - Cobbles
 - Gravel
 - Substrate - Vegetation
 - Other, Explain: Stable.
- Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
- Presence of Run/Riffle/Pool Complexes. Explain: Not present.
- Tributary Geometry: Relatively Straight
- Tributary Gradient (approximate average slope): 1%
- Primary tributary substrate composition (check all that apply):
 - Silts
 - Sands
 - Concrete
 - Muck
 - Cobbles
 - Gravel
 - Substrate - Vegetation
 - Other, Explain: Stable.
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ______________________
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___

Identify Specific Pollutants, if known: ___

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________ Explain: ____________________________
- Surface Flow is: ____________________________
 - Characteristics: ____________________________
 - Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

 - Discrete wetland hydrologic connection Explain: ____________________________
 - Ecological connection Explain: ____________________________
 - Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: __________ Width (ft): __________ Acres: __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 190

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 1008.20 linear feet (ft), 9.20 width (ft)

☑ Other waters acres

☑ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Cops of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 190</th>
</tr>
</thead>
</table>

- **USDA Nat'l Res Conservation Service Soil Survey**
 - Citation:

- **National Wetlands Inventory Maps**
 - Cite Map Name:

- **State/Local Wetland Inventory Maps**

- **FEMA/FIRM Maps**

- **100-year Floodplain Elevation is:**
 - (National Geodetic Vertical Datum of 1929)

 - **Aerial Photographs**
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

 - **Other Photographs**
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 - File No. and Date of Response Letter:

- **Applicable/Supporting Case Law**
 - Citation:

- **Applicable/Supporting Scientific Literature**
 - Citation:

 - Other Information, Please Specify:

- **Additional Comments to Support JD:**
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 191

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal County</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date: __________________________

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. **Waters of the U.S.**

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters ___________ Linear Feet ___________ Width (ft) and/or ___________ Acres

 Wetlands Acres: ___________

 c. Limits (boundaries) of Jurisdiction based on:

2. **Non-Regulated Waters/Wetlands (check if applicable):**

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. TNW

Identify TNW: ___________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting the tributary, but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.01246</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

- □ Tributary flows directly to TNW
- ✔ Tributary flows through _____ tributaries before entering TNW

Project waters are _____ (or more) river miles from TNW
Feature ID: 191

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Bedrock
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Subsurface Flow: No
Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ________________
- Mean High water Mark indicated by: ________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: ________________

Identify Specific Pollutants, if known: ________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ________________
- Wetland Fringe Characteristics: ________________

Habitat for:

- Federally Listed Species Explain findings: ________________
- Fish/Spawn Areas Explain findings: ________________
- Other environmentally-sensitive species Explain findings: ________________
- Aquatic/Wildlife diversity Explain: ________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): ________________
- Wetland Type, Explain: ________________
- Wetland Quality, Explain: ________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ________________ Explain: ________________

Surface Flow is: ________________

Characteristics: ________________

Subsurface Flow: ________________ Explain Findings: ________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ________________
 - Ecological connection Explain: ________________
 - Separated by berm/barrier Explain: ________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ________________
Project Wetlands: Aerial Miles from TNW: ________________

Flow is From: ________________

Estimate approximate Location of Wetland within Floodplain: ________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th></th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary waters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet):</th>
<th>Width (feet):</th>
<th>Acres:</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

- Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 595.72 linear feet (ft), 5.95 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 191

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
</table>

Center coordinates of site:

<table>
<thead>
<tr>
<th>Lat.</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.8482°N</td>
<td>-111.2599°W</td>
</tr>
</tbody>
</table>

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

- Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):

15050100

- **Check** if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- **☐** Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- **☐** Office (Desk) Determination. Date:
- **☐** Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

- **☐** Waters subject to the ebb and flow of the tide.
- **☐** Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

- **☐** There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

- **☐** There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. **☐** Indicate presence of water of U.S. in review area (Check all the apply):
 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. **☐** Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters: Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

 c. **☐** Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 - **☐**Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, the determination must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 1.19622
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 [] Tributary flows directly to TNW
 [] Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):

- ☑ Silts
- ☑ Sand
- ☑ Concrete
- ☐ Muck
- ☑ Cobbles
- ☑ Gravel
- ☑ Substrate - Vegetation
- Other, **Explain:**

Tributary Condition/STability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pooll Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

- ☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

- ☑ Bed and Banks
- ☑ OHWM (check all the apply): OHWM Indicators:
 - ☑ Clear, natural line impressed on the bank
 - ☑ Changes in soil character
 - ☑ Shelving
 - ☑ Vegetation matted down, bent or absent
 - ☑ Leaf litter disturbed or washed away
 - ☑ Sediment deposition
 - ☑ Water staining
 - **Other (list):**

- ☐ Discontinuous?
Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- Oil or scum line along shore objects: []
- Fine shell or debris deposits (foreshore): []
- Physical markings/characteristics: []
- Tidal gauges: []
- Other: []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species: [] Explain findings: []
- Fish/Spawn Areas: [] Explain findings: []
- Other environmentally-sensitive species: [] Explain findings: []
- Aquatic/Wildlife diversity: [] Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: [] Explain: []

Surface Flow is: []

Characteristics: []

Subsurface Flow: [] Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

 - Discrete wetland hydrologic connection: [] Explain: []
 - Ecological connection: [] Explain: []
 - Separated by berm/berm: [] Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.). Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain: Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis: Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 □ TNWs Linear Feet: _ _ _ _ Width (ft): _ _ _ _ TNW Acres _ _ _ _

 □ Wetlands adjacent to TNWs: Acres: _ _ _ _

2. RPWs that flow directly or indirectly into TNWs

 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _ _ _ _

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _ _ _ _

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 □ Tributary waters Linear Feet: _ _ _ _ Width (Ft): _ _ _ _
 □ Other non-wetland waters: Acres: _ _ _ _

3. Non-RPWs that flow directly or indirectly into TNWs.

 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): _ _ _ _ Width (feet): _ _ _ _ Acres: _ _ _ _

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _ _ _ _

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area: Acres: _ _ _ _

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Provide estimates for jurisdictional wetland in the review area (in acres):

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non-wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
- [] Other Non-wetland Waters MBR acres: ______
- [] Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [x] Non-wetland waters linear feet (ft), ______ width (ft) ______
- [] Other waters acres ______
- [] Wetlands acres ______

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [x] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [x] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- [x] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 192</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED JURISDICTIONAL DETERMINATION FORM</td>
</tr>
<tr>
<td>U.S Army Corps of Engineers</td>
</tr>
</tbody>
</table>

- [] USDA Nat’l Res Conservation Service Soil Survey
 - Citation:

- [] National Wetlands Inventory Maps
 - Cite Map Name:

- [] State/Local Wetland Inventory Maps

- [x] FEMA/FIRM Maps:

- [] 100-year Floodplain Elevation is: 0.00 (National Geodetic Vertical Datum of 1929)

- [✓] Aerial Photographs
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- [✓] Other Photographs
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

- [] Previous Determinations
 - File No. and Date of Response Letter:

- [] Applicable/Supporting Case Law
 - Citation:

- [] Applicable/Supporting Scientific Literature
 - Citation:

 - Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 193

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___________ Linear Feet ___________ Width (ft) and/or ___________ Acres
 Wetlands Acres: ___________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abutts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a TNW that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00699
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- □ High tide line indicated by: __________________________
- □ Mean High water Mark indicated by: __________________________
- □ oil or scum line along shore objects
- □ fine shell or debris deposits (foreshore)
- □ physical markings/characteristics
- □ tidal gauges
- □ other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___

Identify Specific Pollutants, if known: ___

(iv) Biological Characteristics. Channel supports (check all that apply):

- □ Riparian Corridor Characteristics: __
- □ Wetland Fringe Characteristics: __

Habitat for:

- □ Federally Listed Species Explain findings: _______________________________________
- □ Fish/Spawn Areas Explain findings: __
- □ Other environmentally-sensitive species Explain findings: __________________________
- □ Aquatic/Wildlife diversity Explain: __

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: _________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________ Explain: __________________________

Surface Flow is: __

Characteristics: __________________________

Subsurface Flow: __________________________ Explain Findings: _______________________

(c) Wetland Adjacency Determination with Non-TNW:

- □ Wetland Directly Abutting Non-TNW
- □ Wetland Not Directly Abutting Non-TNW

- □ Discrete wetland hydrologic connection Explain: __________________________
- □ Ecological connection Explain: __________________________
- □ Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: ______________ Width (ft): ______________ TNW Acres: ______________
 - Wetlands adjacent to TNWs: Acres: ______________

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ______________ Width (Ft): ______________
 - Other non-wetland waters: Acres: ______________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ______________ Width (feet): ______________ Acres: ______________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III C2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 251.96 linear feet (ft), 3.19 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 193</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Approved Jurisdictional Determination Form</th>
</tr>
</thead>
</table>

- **USDA Nat'l Res Conservation Service Soil Survey**
- **Citation:**

- **National Wetlands Inventory Maps**
- **Cite Map Name:**

- **State/Local Wetland Inventory Maps**

- **FEMA/FIRM Maps:**

- **100-year Floodplain Elevation is:**
 - (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs**
 - **Name and Date:** Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs**
 - **Name and Date:** Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
- **File No. and Date of Response Letter:**

- **Applicable/Supporting Case Law**
- **Citation:**

- **Applicable/Supporting Scientific Literature**
- **Citation:**

- **Other Information, Please Specify:**

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 194
State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area
Non-Wetlands waters Linear Feet Width (ft) and/or Acres
Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW

Identify TNW: ______________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a TRIBUTARY that is not a TNW, complete Section III.D.1. Only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01640
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 □ Tributary flows through [4] tributaries before entering TNW
 □ Project waters are [30 (or more)] river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 194

Project waters are ________________ river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

☑ Silts
☐ Sands
☐ Concrete
☐ Muck
☐ Cobbles
☐ Gravel
☐ Substrate - Vegetation
☐ Bedrock
☐ Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
☑ Clear, natural line impressed on the bank
☑ Changes in soil character
☐ Shelving
☐ Vegetation matted down, bent or absent
☑ Leaf litter disturbed or washed away
☐ Sediment deposition
☐ Water staining
Other (list):

☐ Discontinuous? Explain:
(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

Habitat for:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
Wetland Size (ac):
Wetland Type, Explain:
Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
Wetland Flow is:
Surface Flow is:
Characteristics:
Subsurface Flow:

(c) Wetland Adjacency Determination with Non-TNW:

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):

- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - [] TNWs
 - [] Wetlands adjacent to TNWs
 - Linear Feet: [] Width (ft): [] TNW Acres []

2. **RPWs that flow directly or indirectly into TNWs**
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - [] Other non-wetland waters
 - Linear Feet: [] Width (ft): [] Acres: []

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters Acres: ______
☐ Other waters Acres: ______
☐ Wetlands Acres: ______

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature</th>
<th>Jurisdictional Determination Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature ID</td>
<td>194</td>
</tr>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td>Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>Name and Date</td>
</tr>
<tr>
<td>Other Photographs</td>
<td>Name and Date</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law</td>
<td>Citation</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation</td>
</tr>
<tr>
<td>Other Information, Please Specify</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 195

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 1. **General Area Conditions:**
 - **Watershed Size (sq mi):** 49650
 - **Drainage Area (sq mi):** 5.34043
 - **Average Annual Rainfall (in):** 10
 - **Average Annual Snowfall (in):** 0
 2. **Physical Characteristics:**
 - (a) **Relationship with TNW**
 - ☑ Tributary flows through
 - ☐ Tributary flows directly to TNW
 - Tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: **Natural**

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- **Silts**
- **Cobble**
- **Bedrock**
- **Sands**
- **Concrete**
- **Gravel**
- **Substrate - Vegetation**
- **Muck**

Other, Explain: **Stable.**

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks.]

- Explain: **Not present.**

Tributary Gradient (approximate average slope): **1%**

(c) Flow

Tributary Provides for: **Ephemeral Flow**

Describe Flow Regime: **Ephemeral.**

Estimate average number of flow events in review area/year: **2-5**

Other Information on Duration and Volume:

- Surface Flow is: **Discrete and Confined**
- Characteristics:

Subsurface Flow: **No**

- Dye (or other) test performed:

Tributary Has (Check all that apply):

- **Bed and Banks**
- **OHWM** (check all the apply): **OHWM Indicators:**
 - **Clear, natural line impressed on the bank**
 - **Changes in soil character**
 - **Shelving**
 - **Vegetation matted down, bent or absent**
 - **Leaf litter disturbed or washed away**
 - **Sediment deposition**
 - **Water staining**
 - **Presence of litter and debris**
 - **Destruction of terrestrial vegetation**
 - **Presence of wrack line**
 - **Sediment sorting**
 - **Scour**
 - **Multiple observed or predicted flow events**
 - **Abrupt change in plant community**

Other (list):

- **Discontinuous?**
- Explain:

Project waters are **river** Miles from tributary to RPW:

Project waters are **30** (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects: []
- Fine shell or debris deposits (foreshore): []
- Physical markings/characteristics: []
- Tidal gauges: []
- Other: []
- Mean high water mark indicated by: []
- Survey to available datum: []
- Physical markings: []
- Vegetation lines/changes in vegetation types: []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species: []
- Fish/Spawn Areas: []
- Other environmentally-sensitive species: []
- Aquatic/Wildlife diversity: []

Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: []

Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection: []
- Ecological connection: []
- Separated by berm/Barrier: []

Explain: []

(d) Proximity (Relationship) to TNW:

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:
- □ Habitat for:
 - □ Federally Listed Species Explain:
 - □ Fish/Spawn Areas Explain:
 - □ Other environmentally-sensitive species Explain:
 - □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat’l Res Conservation Service Soil Survey
Citation: ____________

☐ National Wetlands Inventory Maps
Cite Map Name: ____________

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law
Citation:

☐ Applicable/Supporting Scientific Literature
Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 196
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There ☑ No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There ☑ No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00130
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain:]

- [] Stable

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

- **Tributary Provides for:** Ephemeral Flow
- **Estimate average number of flow events in review area/year:** 2-5
- **Describe Flow Regime:** Ephemeral.
- **Other Information on Duration and Volume:**

Surface Flow is: Discrete and Confined

Subsurface Flow: No

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community
 - [] Other (list):

- [] Discontinuous? Explain:

Project waters are

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Feature ID: 196
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- o or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:
Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:
Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely deterministic of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section II.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): __________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters __________

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 84.80 linear feet (ft), 3.77 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 196

☐ USDA Nat’l Res Conservation Service Soil Survey
Citation:

☐ National Wetlands Inventory Maps
Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: _______ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 197

 State: AZ County/Parish/borough: Pinal County City: N/A

 Center coordinates of site: Lat. 32.8482”N Long. -111.2599”W

 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

 Name of watershed or Hydrologic Unit Code (HUC): 15050100

 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 □ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

 □ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

□ Waters subject to the ebb and flow of the tide.

□ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 □ TNWs (new)
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02388
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: __________________________
- [] Oil or scum line along shore objects
- [] Fine shell or debris deposits (foreshore)
- [] Physical markings/characteristics
- [] Tidal gauges
- [] Other

- [] Mean High water Mark indicated by: __________________________
- [] Survey to available datum
- [] Physical markings
- [] Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: __________________________
- [] Wetland Fringe Characteristics: __________________________

Habitat for:

- [] Federally Listed Species Explain findings: __________________________
- [] Fish/Spawn Areas Explain findings: __________________________
- [] Other environmentally-sensitive species Explain findings: __________________________
- [] Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): __________________________

Wetland Type, Explain: __________________________

Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________ Explain: __________________________

Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________ Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: __________________________

Ecological connection Explain: __________________________

Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs
- Wetlands adjacent to TNWs

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters
 - Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally”. Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [✓] Non-wetland waters 699.89 linear feet (ft), 7.30 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [✓] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [✓] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- [✓] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 197

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 198

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.07026
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 [] Tributary flows directly to TNW
 [] Tributary flows through [4] tributaries before entering TNW
 Project waters are [30 (or more)] river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
- [] Discontinuous? Explain:
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally-sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: __________________________ Explain: __________________________
- Surface Flow is: __________________________

Characteristics: __________________________ Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: __________________________
- Ecological connection Explain: __________________________
- Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: __________________________
- Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary waters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet)</th>
<th>Width (feet)</th>
<th>Acres</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concur with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
FEATURE ID: 198

198

[] USDA Nat’l Res Conservation Service Soil Survey
[] National Wetlands Inventory Maps
[] State/Local Wetland Inventory Maps
[] FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

[] Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

[] Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

[] Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 199
 State: AZ County/Parish/borough: Pinal City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ✔ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 □ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 □ Office (Desk) Determination. Date:
 ✔ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 □ Waters subject to the ebb and flow of the tide.
 □ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 □ TNWs (new)
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):
 ✔ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00363
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ✅ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):

Discontinuous? Explain:
(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:
Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW
(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:
Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
 Characteristics:
 Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR: acres: ______
☐ Wetlands MBR: acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters: 387.56 linear feet (ft), 4.18 width (ft)
☐ Other waters: acres
☐ Wetlands: acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Cops of Engineers

<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>199</th>
</tr>
</thead>
</table>

- **USDA Nat’l Res Conservation Service Soil Survey**
- **National Wetlands Inventory Maps**
- **State/Local Wetland Inventory Maps**
- **FEMA/FIRM Maps**: 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations**
- **Applicable/Supporting Case Law Citation:**
- **Applicable/Supporting Scientific Literature Citation:**

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 2

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04365
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Average Width (ft):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Depth (ft):</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

<table>
<thead>
<tr>
<th>Presence of Run/Riffle/Pool Complexes. Explain:</th>
<th>Not present.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary Geometry:</td>
<td>Relatively Straight</td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope):</td>
<td>1%</td>
</tr>
</tbody>
</table>

(c) Flow:

- Tributary Provides for: Ephemeral Flow
- Estimate average number of flow events in review area/year: 2-5
- Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Subsurface Flow: No

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list):

- [] Discontinuous? Explain:

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

- Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:
 Habitat for:
 - [] Federally Listed Species Explain:
 - [] Fish/Spawn Areas Explain:
 - [] Other environmentally-sensitive species Explain:
 - [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): ___________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: ___________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: ___________

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters width (ft): 2.66 acres _______

☐ Other waters width (ft): _______ acres _______

☐ Wetlands width (ft): _______ acres _______

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 2</th>
</tr>
</thead>
</table>

- **USDA Nat'l Res Conservation Service Soil Survey**
 - Citation:
 - Cite Map Name:

- **National Wetlands Inventory Maps**
 - Cite Map Name:

- **State/Local Wetland Inventory Maps**

- **FEMA/FIRM Maps**
 - 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs**
 - Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs**
 - Name and Date: Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 - File No. and Date of Response Letter:

- **Applicable/Supporting Case Law**
 - Citation:

- **Applicable/Supporting Scientific Literature**
 - Citation:

 - Other Information, Please Specify:

- **Additional Comments to Support JD:**
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 20

State: AZ County/Parish/borough: Pinal County City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00463
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 [] Tributary flows directly to TNW
 [] Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Bedrock
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
- Clear, natural line impressed on the bank
- Changes in soil character
- Shelving
- Vegetation matted down, bent or absent
- Leaf litter disturbed or washed away
- Sediment deposition
- Water staining

Other (list):

☐ Discontinuous? Explain:

Feature ID: 20
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: _______________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally -sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________
- Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________

Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ____________________________
- Ecological connection Explain: ____________________________
- Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________________
- Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs
 - [] Wetlands adjacent to TNWs

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - [] Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 142.06 linear feet (ft), 5.43 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 20

- USDA Nat'l Res Conservation Service Soil Survey
 - Citation: [Blank]

- National Wetlands Inventory Maps
 - Cite Map Name: [Blank]

- State/Local Wetland Inventory Maps

- FEMA/FIRM Maps: [Blank]

- 100-year Floodplain Elevation is: [Blank] (National Geodetic Vertical Datum of 1929)

- Aerial Photographs
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- Other Photographs
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

- Previous Determinations
 - File No. and Date of Response Letter: [Blank]

- Applicable/Supporting Case Law
 - Citation: [Blank]

- Applicable/Supporting Scientific Literature
 - Citation: [Blank]

 Other Information, Please Specify: [Blank]

Additional Comments to Support JD: [Blank]
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 200

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g, offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aqua-tice resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW: ________

 □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 | Watershed Size (sq mi) | 49650 |
 | Drainage Area (sq mi) | 0.04058 |
 | Average Annual Rainfall (in) | 10 |
 | Average Annual Snowfall (in) | 0 |

 (ii) **Physical Characteristics:**

 (a) Relationship with TNW

 □ Tributary flows directly to TNW

 ☑ Tributary flows through __________ tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
General Tributary Characteristics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes</td>
<td>3:1</td>
</tr>
<tr>
<td>Primary tributary substrate composition</td>
<td></td>
</tr>
<tr>
<td>Silts</td>
<td>✔</td>
</tr>
<tr>
<td>Sands</td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
</tr>
<tr>
<td>Muck</td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td></td>
</tr>
<tr>
<td>Other, Explain</td>
<td></td>
</tr>
</tbody>
</table>

Tributary Condition/Coherence
- Stable.
- Not present.
- Relatively Straight

Tributary Gradient
- 1%

Flow

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeral Flow</td>
<td></td>
</tr>
<tr>
<td>Estimate average number of flow events in review area/year</td>
<td>2-5</td>
</tr>
<tr>
<td>Describe Flow Regime</td>
<td>Ephemeral.</td>
</tr>
<tr>
<td>Surface Flow is</td>
<td>Discrete and Confined</td>
</tr>
<tr>
<td>Subsurface Flow</td>
<td>No</td>
</tr>
<tr>
<td>Dye (or other) test performed</td>
<td></td>
</tr>
</tbody>
</table>

OHWM Indicators
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Discontinuous?
- Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

<table>
<thead>
<tr>
<th>High tide line indicated by:</th>
<th>Mean High water Mark indicated by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>oil or scum line along shore objects</td>
<td>survey to available datum</td>
</tr>
<tr>
<td>fine shell or debris deposits (foreshore)</td>
<td>physical markings</td>
</tr>
<tr>
<td>physical markings/characteristics</td>
<td>vegetation lines/changes in vegetation types</td>
</tr>
<tr>
<td>tidal gauges</td>
<td>other</td>
</tr>
</tbody>
</table>

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

<table>
<thead>
<tr>
<th>Federally Listed Species</th>
<th>Explain findings:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish/Spawn Areas</td>
<td>Explain findings:</td>
</tr>
<tr>
<td>Other environmentally -sensitive species</td>
<td>Explain findings:</td>
</tr>
<tr>
<td>Aquatic/Wildlife diversity</td>
<td>Explain:</td>
</tr>
</tbody>
</table>

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

<table>
<thead>
<tr>
<th>Wetland Size (ac):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Wetland Type, Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Wetland Quality, Explain:</th>
</tr>
</thead>
</table>

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

<table>
<thead>
<tr>
<th>Wetland Flow is: Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
</tr>
</thead>
</table>

Characteristics:

<table>
<thead>
<tr>
<th>Subsurface Flow: Explain Findings:</th>
</tr>
</thead>
</table>

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

<table>
<thead>
<tr>
<th>Discrete wetland hydrologic connection</th>
<th>Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ecological connection</th>
<th>Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Separated by berm/barrier</th>
<th>Explain:</th>
</tr>
</thead>
</table>

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
☐ Riparian Buffer Characteristics (type, average width):
☐ Vegetation type/percent cover. Explain:
Habitat for:
☐ Federally Listed Species Explain:
☐ Fish/Spawn Areas Explain:
☐ Other environmentally-sensitive species Explain:
☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.
Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented in the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:
This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: ___ Width (ft): ___ TNW Acres ___
 - [] Wetlands adjacent to TNWs: Acres: ___

2. **RPWs that flow directly or indirectly into TNWs**
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ___
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ___
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: ___ Width (Ft): ___
 - [] Other non-wetland waters: Acres: ___

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ___ Width (feet): ___ Acres: ___

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ___
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ___
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 2174.84 linear feet (ft), 5.75 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
□ USDA Nat’l Res Conservation Service Soil Survey
□ National Wetlands Inventory Maps
□ State/Local Wetland Inventory Maps
□ FEMA/FIRM Maps:
□ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)
▷ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
▷ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
□ Previous Determinations File No. and Date of Response Letter:
□ Applicable/Supporting Case Law Citation:
□ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:
Additional Comments to Support JD:
Approve Jurisdictional Determination Form

U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

- **Drainage Feature:** 201
 - **State:** AZ
 - **County/Parish/borough:** Pinal County
 - **City:** N/A
 - **Ocean area:** N/A

 Center coordinates of site:

 - **Lat.:** 32.8482°N
 - **Long.:** -111.2599°W

 Name of nearest waterbody:

 - Gila River between Powers Butte and Gillespie Dam

 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

 - Gila River between Powers Butte and Gillespie Dam

 Name of watershed or Hydrologic Unit Code (HUC): 15050100

- **Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request**

- **Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.**

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- **Office (Desk) Determination.** Date:
 - **Field Determination.** Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- **Waters subject to the ebb and flow of the tide.**
- **Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.**

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "Waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. **Waters of the U.S.**
 - **Indicate presence of water of U.S. in review area (Check all the apply):**
 - **TNWs (new)**
 - **Wetlands adjacent to TNWs**
 - **Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs**
 - **Non-RPWs that flow directly or indirectly into TNWs**
 - **Wetlands directly abutting RPWs that flow directly or indirectly into TNWs**
 - **Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs**
 - **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs**
 - **Impoundments of jurisdictional waters**
 - **Isolated (interstate or intrastate) waters, including isolated wetlands**

 b. Identify (estimate) size of waters of the U.S. in the review area

 - **Non-Wetlands waters**
 - **Linear Feet**
 - **Width (ft) and/or**
 - **Acres**

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. **Non-Regulated Waters/Wetlands (check if applicable):**
 - **Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:**

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.15621
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 201

U.S Army Corps of Engineers

Project waters are [] river Miles from tributary to RPW:

Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are [] aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: [] Natural

Explain:

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
</tbody>
</table>
| Average Side Slopes: | 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:

Stable.

Presence of Run/Riffle/Pool Complexes. Explain:

Not present.

Tributary Geometry:

Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for:

Ephemeral Flow

Estimate average number of flow events in review area/year:

2-5

Describe Flow Regime:

Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:

Discrete and Confined

Characteristics:

Subsurface Flow:

No

Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):

[] Discontinuous?

Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________ Explain: __________________________

Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________ Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________________________
 - Ecological connection Explain: __________________________
 - Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________
Project Wetlands: Aerial Miles from TNW: __________________________
Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: _______ Width (ft): _______ TNW Acres _______
 - Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: _______ Width (Ft): _______ Acres: _______
 - Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Provide areage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide areage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
201

Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

[] Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

[] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):

[] Other Non-wetland Waters MBR acres:

[] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

[] Non-wetland waters Acres:

[] Other waters Acres:

[] Wetlands Acres:

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

[] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

[] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

[] Office Concurs with data sheets/delineation report

[] Office Does Not Concur with data sheets/delineation report

[] Data Sheets Prepared by the Corps

[] Corps Navigable Water Study

[] US Geological Survey Hydrologic Atlas

[] USGS NHD Data

[] USGS 8 and 12 digit HUC Maps

[] US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
□ USDA Nat’l Res Conservation Service Soil Survey Citation:
□ National Wetlands Inventory Maps Cite Map Name:
□ State/Local Wetland Inventory Maps
□ FEMA/FIRM Maps:
□ 100-year Floodplain Elevation is: ___________________________ (National Geodetic Vertical Datum of 1929)
✓ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
✓ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
□ Previous Determinations File No. and Date of Response Letter:
□ Applicable/Supporting Case Law Citation:
□ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:
Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
Date: July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature
State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all that apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: __________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a TNW, it is an additional wetland to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.23554
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through _______ tributaries before entering TNW

 Project waters are _______ (or more) river miles from TNW
U.S. Army Corps of Engineers

Project waters are
- 30 (or more) aerial (straight) miles from tributary to TNW:
- River Miles from tributary to RPW:
- Aerial (straight) miles from tributary to RPW:
- Project waters cross or serve as state boundaries. **Explain:**

Identify flow route to TNW
- Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes:

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, **Explain:**

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. **Explain:**
- Stable.

Presence of Run/Riffle/Pool Complexes. **Explain:**
- Not present.

Tributary Geometry:
- Relatively Straight
- Tributary Gradient (approximate average slope):

$$1\%$$

(c) Flow

Tributary Provides for:
- Ephemeral Flow

Estimate average number of flow events in review area/year:
- 2-5

Describe Flow Regime:
- Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
- Discrete and Confined

Characteristics:

Subsurface Flow:
- No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- **OHWM (check all the apply):**
 - OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? **Explain:**
(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain:

Identify Specific Pollutants, if known:

- Explain:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:

- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:

- Fish/Spawn Areas Explain findings:

- Other environmentally-sensitive species Explain findings:

- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):

- Wetland Type, Explain:

- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:

- Surface Flow is:

- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW

- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:

- Ecological connection Explain:

- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:

- Project Wetlands: Aerial Miles from TNW:

- Flow is From:

- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: __________ Width (ft): __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 202</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat'l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100-year Floodplain Elevation is:</th>
<th>(National Geodetic Vertical Datum of 1929)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Aerial Photographs (Name and Date):</th>
<th>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous Determinations File No. and Date of Response Letter:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law Citation:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Scientific Literature Citation:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other Information, Please Specify:</th>
<th></th>
</tr>
</thead>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 203
State: AZ County/Parish/borough: Pinal County City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters [_________] Linear Feet [_________] Width (ft) and/or [_________] Acres
 Wetlands Acres: [_________]

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ___________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): ___________________________ 49650
 Drainage Area (sq mi): ___________________________ 0.00834
 Average Annual Rainfall (in): ___________________________ 10
 Average Annual Snowfall (in): ___________________________ 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 203

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: blank
- Mean High water Mark indicated by: blank
- Oil or scum line along shore objects: blank
- Fine shell or debris deposits (foreshore): blank
- Physical markings/characteristics: blank
- Tidal gauges: blank
- Other: blank

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: blank

Identify Specific Pollutants, if known: blank

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: blank
- Wetland Fringe Characteristics: blank

Habitat for:

- Federally Listed Species Explain findings: blank
- Fish/Spawn Areas Explain findings: blank
- Other environmentally-sensitive species Explain findings: blank
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): blank
- Wetland Type, Explain: blank
- Wetland Quality, Explain: blank

Project Wetlands Cross or Serve as State Boundaries, Explain: blank

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: blank

Surface Flow is: blank

Characteristics: blank

Subsurface Flow: Explain Findings: blank

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: blank
- Ecological connection Explain: blank
- Separated by berm/barrier Explain: blank

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: blank

Project Wetlands: Aerial Miles from TNW: blank

Flow is From: blank

Estimate approximate Location of Wetland within Floodplain: blank
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: Width (ft): TNW Acres
 - [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters Acres:
- Other waters Acres:
- Wetlands Acres:

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concur with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

Feature ID: 203

<table>
<thead>
<tr>
<th>Feature</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
</tbody>
</table>

- **100-year Floodplain Elevation is:** [National Geodetic Vertical Datum of 1929](#)
- **Aerial Photographs (Name and Date):** Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs (Name and Date):** Ground Photos; June through July 2012, September through October 2012

Previous Determinations

File No. and Date of Response Letter:

- **Applicable/Supporting Case Law Citation:**
- **Applicable/Supporting Scientific Literature Citation:**

Other Information, Please Specify:

Additional Comments to Support JD:

Additional information may be included here if necessary.
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 204

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW:

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.00423 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☑ Tributary flows directly to TNW

 ☐ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 204</th>
</tr>
</thead>
</table>

Project waters are

<table>
<thead>
<tr>
<th>river Miles from tributary to RPW:</th>
<th>Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>30 (or more)</th>
<th>aerial (straight) miles from tributary to TNW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>Explain:</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
</tbody>
</table>

Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
Stable.

Presence of Run/Riffle/Pool Complexes. Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

- **Dye (or other) test performed:**

Tributary Has (Check all that apply):

- Bed and Banks
- **OHWM (check all the apply): OHWM Indicators:**
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

- **Other (list):**

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally -sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): []

Wetland Type, Explain: []

Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: [] Explain: []

Surface Flow is: []

Characteristics: []

Subsurface Flow: [] Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- [] Riparian Buffer
 Characteristics (type, average width):
 Explain:
- [] Vegetation
 type/percent cover. Explain:
 Habitat for:
 - [] Federally Listed Species
 Explain:
 - [] Fish/Spawn Areas
 Explain:
 - [] Other environmentally-sensitive species
 Explain:
 - [] Aquatic/Wildlife Diversity
 Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in cumulative analysis:
 Wetland acres in total being considered in cumulative analysis:
 Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:
 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft): Acres: |
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 400.43 linear feet (ft), 4.95 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat’l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ___________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify: _____________________________

Additional Comments to Support JD:
Approved Jurisdictional Determination Form

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 205
State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N, Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 Check box for vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a TNW that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00447
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 [] Tributary flows directly to TNW
 [✓] Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain: Stable.

(c) Flow

<table>
<thead>
<tr>
<th>Flow Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary Provides for</td>
<td>Ephemeral Flow</td>
</tr>
<tr>
<td>Estimate average number of flow events in review area/year</td>
<td>2-5</td>
</tr>
</tbody>
</table>

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Bed and Banks

OHWM (check all that apply):

- [] Clear, natural line impressed on the bank
- [] Changes in soil character
- [] Shelving
- [] Vegetation matted down, bent or absent
- [] Leaf litter disturbed or washed away
- [] Sediment deposition
- [] Water staining

Other (list):

- [] Presence of litter and debris
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community

Discontinuous? Explain:
PHASE 1 APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 205

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []
- Mean High water Mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: []

Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
 - Discrete wetland hydrologic connection Explain: []
 - Ecological connection Explain: []
 - Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer
- Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species
 - Explain:
 - Fish/Spawn Areas
 - Explain:
 - Other environmentally-sensitive species
 - Explain:
 - Aquatic/Wildlife Diversity
 - Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

- All wetland(s) being considered in cumulative analysis:
- Wetland acres in total being considered in cumulative analysis:
- Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
 - [] Wetlands adjacent to TNWs: Acres: []

2. **RPWs that flow directly or indirectly into TNWs**
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: [] Width (Ft): []
 - [] Other non-wetland waters: Acres: []

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 814.08 linear feet (ft), 4.57 width (ft)
☐ Other waters
☐ Wetlands

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 205</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat’l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
<td></td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 206

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination.
Date:

☒ Field Determination.
Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☑ No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☑ No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters [] Linear Feet [] Width (ft) and/or [] Acres

Wetlands Acres:

 cables

10. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.81863
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through _______ tributaries before entering TNW
 Project waters are _______ river miles from TNW.
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Bedrock
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
| Feature ID: 206 |

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ________________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ________________________________
- Fish/Spawn Areas Explain findings: ________________________________
- Other environmentally-sensitive species Explain findings: ________________________________
- Aquatic/Wildlife diversity Explain: __

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ________________________________
- Wetland Type, Explain: ________________________________
- Wetland Quality, Explain: ________________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________________________

b) General Flow Relationship with Non-TNW:

Wetland Flow is: ________________________________ Explain: ________________________________

Surface Flow is: ________________________________

Characteristics: ________________________________

Subsurface Flow: ________________________________ Explain Findings: ________________________________

c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ________________________________
- Ecological connection Explain: ________________________________
- Separated by berm/barrier Explain: ________________________________

d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ________________________________

Project Wetlands: Aerial Miles from TNW: ________________________________

Flow is From: ________________________________

Estimate approximate Location of Wetland within Floodplain: ________________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURIS DICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______
 - [] Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - [] Tributary waters Linear Feet: ______ Width (ft): ______
 - [] Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): Length (linear feet): Width (ft):
- [] Other Non-wetland Waters MBR: Acres:
- [] Wetlands MBR: Acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters: 834.47 linear feet (ft), 16.76 width (ft)
- [] Other waters: Acres
- [] Wetlands: Acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Cops of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 206</th>
</tr>
</thead>
</table>

USDA Nat'l Res Conservation Service Soil Survey
- Citation:

National Wetlands Inventory Maps
- Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

1. 100-year Floodplain Elevation is:
 - (National Geodetic Vertical Datum of 1929)

Aerial Photographs
- Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs
- Name and Date: Ground Photos; June through July 2012, September through October 2012

Previous Determinations
- File No. and Date of Response Letter:

Applicable/Supporting Case Law
- Citation:

Applicable/Supporting Scientific Literature
- Citation:

Other Information, Please Specify:
-

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 207

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW: ___________ □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.00391 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 207

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Average Width (ft):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Depth (ft):</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain: Stable.

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics: Explain:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
207

Feature ID: 207

U.S Army Corps of Engineers

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc): Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

B) Riparian Corridor Characteristics:

W) Wetland Fringe Characteristics:

Habitat for:

- federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet:
 - Width (ft):
 - TNW Acres:
 - Wetlands adjacent to TNWs: Acres:

2. **RPWs that flow directly or indirectly into TNWs**
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet:
 - Width (Ft):
 - Other non-wetland waters: Acres:

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 207

USDA Nat'l Res Conservation Service Soil Survey

Citation: [Blank]

National Wetlands Inventory Maps

Cite Map Name: [Blank]

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: [Blank] (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date):

Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date):

Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 208

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): _______________ 49650
 Drainage Area (sq mi): _______________ 0.00286
 Average Annual Rainfall (in): __________ 10
 Average Annual Snowfall (in): __________ 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ☑ Tributary flows through ______ 4 tributaries before entering TNW

 Project waters are _______ 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 208</th>
</tr>
</thead>
</table>

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) **General Tributary Characteristics**

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) **Flow**

<table>
<thead>
<tr>
<th>Tributary Provides for: Ephemeral Flow</th>
</tr>
</thead>
</table>

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

<table>
<thead>
<tr>
<th>Surface Flow is: Discrete and Confined</th>
<th>Characteristics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsurface Flow: No</td>
<td>Explain:</td>
</tr>
</tbody>
</table>

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

Describe Flow Regime: Ephemeral.
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Oil or scum line along shore objects: ____________________________
- Fine shell or debris deposits (foreshore): ____________________________
- Physical markings/characteristics: ____________________________
- Tidal gauges: ____________________________
- Other: ____________________________

- Mean High water Mark indicated by: ____________________________
- Survey to available datum: ____________________________
- Physical markings: ____________________________
- Vegetation lines/changes in vegetation types: ____________________________

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally-sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________________________
 - Ecological connection Explain: ____________________________
 - Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 164.91 linear feet (ft), 3.30 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 208

USDA Nat’l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 209

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/county:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Traditional Navigable Water (TNW)

Name of watershed or Hydrologic Unit Code (HUC):

15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)

 ☐ Wetlands adjacent to TNWs

 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

 ☐ Non-RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

 ☐ Impoundments of jurisdictional waters

 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres

 Wetlands Acres: _______

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a

Traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04612
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
209

Feature ID:

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate average number of flow events in review area/year:</td>
<td>2-5</td>
</tr>
<tr>
<td>Describe Flow Regime:</td>
<td>Ephemeral.</td>
</tr>
</tbody>
</table>

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Subsurface Flow: No
Dye (or other) test performed: Explain:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: _____________________________
- Mean High water Mark indicated by: _____________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: _____________________________

Identify Specific Pollutants, if known: _____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: _____________________________
- Wetland Fringe Characteristics: _____________________________

Habitat for:

- Federally Listed Species Explain findings: _____________________________
- Fish/Spawn Areas Explain findings: _____________________________
- Other environmentally-sensitive species Explain findings: _____________________________
- Aquatic/Wildlife diversity Explain: _____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): _____________________________
- Wetland Type, Explain: _____________________________
- Wetland Quality, Explain: _____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: _____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: _____________________________
- Surface Flow is: _____________________________

Characteristics:
Subsurface Flow: _____________________________ Explan Findings: _____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: _____________________________
- Ecological connection Explain: _____________________________
- Separated by berm/barrier Explain: _____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: _____________________________
Project Wetlands: Aerial Miles from TNW: _____________________________

Flow is From: _____________________________
Estimate approximate Location of Wetland within Floodplain: _____________________________
C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: ______ Width (ft): ______ TNW Acres: ______
 - [] Wetlands adjacent to TNWs: Acres: ______

2. **RPWs that flow directly or indirectly into TNWs**
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: ______ Width (Ft): ______ Acres: ______
 - [] Other non-wetland waters: Acres: ______

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 209

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 21
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ✑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICATION
 There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICATION
 There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01843
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries.
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- [] Bedrock
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:
Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for:
- Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime:
- Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
- Discrete and Confined
Characteristics:

Subsurface Flow:
- No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
Other (list):

Discontinuous?
Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: []
- Explain: []
- Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: _______ Width (ft): _______ TNW Acres _______
- Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: _______ Width (Ft): _______
 - Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ________ Acres: ________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ________ width (ft): ________
☐ Other Non-wetland Waters MBR acres: ________
☐ Wetlands MBR acres: ________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☒ Non-wetland waters 1355.31 linear feet (ft), 9.50 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☒ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th></th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'I Res Conservation Service Soil Survey</td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 210

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.78566
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

Feature ID: 210

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries.</td>
<td>Explain:</td>
</tr>
</tbody>
</table>

Identify flow route to TNW

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

Average Width (ft):	
Average Depth (ft):	
Average Side Slopes:	3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [x] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain: |

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

Stable.

Presence of Run/Riffle/Pool Complexes. Explain:

Not present.

Tributary Geometry:

Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for:

Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime:

Ephemeral.

Other Information on Duration and Volume:

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
<th>Discrete and Confined</th>
<th>Characteristics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsurface Flow:</td>
<td>No Explain:</td>
<td></td>
</tr>
</tbody>
</table>

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [x] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community
 - [] Other (list):

- [] Discontinuous? Explain: |
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other
- Mean high water mark indicated by:
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

<table>
<thead>
<tr>
<th>Category</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td></td>
</tr>
<tr>
<td>Spawning</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Aquatic/Wildlife</td>
<td></td>
</tr>
</tbody>
</table>

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics

(a) **General Wetland Characteristics**

Properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Size (ac)</td>
<td></td>
</tr>
<tr>
<td>Wetland Type</td>
<td></td>
</tr>
<tr>
<td>Wetland Quality</td>
<td></td>
</tr>
</tbody>
</table>

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) **General Flow Relationship with Non-TNW**

Wetland Flow is:
Surface Flow is:
Characteristics:
Subsurface Flow:

Explain Findings:

(c) **Wetland Adjacency Determination with Non-TNW**

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection
 - Ecological connection
 - Separated by berm/barrier

Explain:

(d) **Proximity (Relationship) to TNW**

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate location of wetland within floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
- [] Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - [] Tributary waters Linear Feet: [] Width (Ft): []
 - [] Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters
- Other waters
- Wetlands

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 210</th>
</tr>
</thead>
</table>

| USDA Nat’l Res Conservation Service Soil Survey | Citation: |
| National Wetlands Inventory Maps | Cite Map Name: |
| State/Local Wetland Inventory Maps |
| FEMA/FIRM Maps: |
100-year Floodplain Elevation is:	(National Geodetic Vertical Datum of 1929)
Aerial Photographs	(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
Other Photographs	(Name and Date): Ground Photos; June through July 2012, September through October 2012
Previous Determinations	File No. and Date of Response Letter:
Applicable/Supporting Case Law	Citation:
Applicable/Supporting Scientific Literature	Citation:
Other Information, Please Specify:	

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICATION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICATION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters: [] Linear Feet [] Width (ft) and/or [] Acres
 Wetlands Acres: []

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02293
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 □ Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- ☑ Silts
- ☑ Sands
- ☐ Concrete
- ☐ Muck
- ☑ Cobble
- ☑ Gravel
- ☑ Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Estimate average number of flow events in review area/year: 2-5

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks

☐ OHWM (check all the apply): OHWM Indicators:
- ☑ Clear, natural line impressed on the bank
- ☑ Changes in soil character
- ☑ Shelving
- ☑ Vegetation matted down, bent or absent
- ☑ Leaf litter disturbed or washed away
- ☑ Sediment deposition
- ☑ Water staining

Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

<table>
<thead>
<tr>
<th>Explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Identify Specific Pollutants, if known:

<table>
<thead>
<tr>
<th>Explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

- **General Wetland Characteristics**
 - Properties:
 - Wetland Size (ac):
 - Wetland Type, Explain:
 - Wetland Quality, Explain:
 - Project Wetlands Cross or Serve as State Boundaries, Explain:

- **General Flow Relationship with Non-TNW**:
 - Wetland Flow is:
 - Surface Flow is:
 - Characteristics:
 - Subsurface Flow:
 - Explain Findings:

- **Wetland Adjacency Determination with Non-TNW**:
 - Wetland Directly Abutting Non-TNW
 - Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

- **Proximity (Relationship) to TNW**
 - Project Wetlands: River Miles from TNW:
 - Project Wetlands: Aerial Miles from TNW:
 - Flow is From:
 - Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species
- Fish/Spawn Areas
- Other environmentally-sensitive species
- Aquatic/Wildlife Diversity

Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 1333.95 linear feet (ft), 5.68 width (ft)
- Other waters acres
- Wetlands acres

SECTIONS IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 211</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat’l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
</tbody>
</table>

| 100-year Floodplain Elevation is: | (National Geodetic Vertical Datum of 1929) |

□ Aerial Photographs	(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
□ Other Photographs	(Name and Date): Ground Photos; June through July 2012, September through October 2012
Previous Determinations	File No. and Date of Response Letter:

□ Applicable/Supporting Case Law	Citation:
□ Applicable/Supporting Scientific Literature	Citation:
Other Information, Please Specify:	

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 212

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

 1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or</th>
<th>Acres</th>
</tr>
</thead>
</table>

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00331
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

- Mean High water Mark indicated by: ____________________________
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally-sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________ Explain: ____________________________
- Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: ____________________________

Ecological connection Explain: ____________________________

Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________________
- Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres
☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (ft).
☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 260.14 linear feet (ft), 4.20 width (ft)
☐ Other waters ______ acres
☐ Wetlands ______ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 212

USDA Nat’l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date):
Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date):
Ground Photos; June through July 2012, September through October 2012

Previous Determinations
File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 213

- **State:** AZ
- **County/Parish/borough:** Pinal County
- **City:** N/A
- **Name of nearest waterbody:** Gila River between Powers Butte and Gillespie Dam
- **Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:** Gila River between Powers Butte and Gillespie Dam
- **Name of watershed or Hydrologic Unit Code (HUC):** 15050100

- **Center coordinates of site:**
 - Lat.: 32.8482°N
 - Long.: -111.2599°W

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination.
- Field Determination. Date: 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters _________ Linear Feet _________ Width (ft) and/or _________ Acres
 - Wetlands Acres: _________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

- Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 - Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.03889
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Bedrock
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

- Mean High water Mark indicated by:
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to SectionIII.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs
 - Linear Feet:
 - Width (ft):
 - TNW Acres
- Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Linear Feet:
 - Width (ft):
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters ______

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
- Other Non-wetland Waters MBR: acres: ______
- Wetlands MBR: acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters: 1692.32 linear feet, 5.57 width (ft)
- Other waters: acres
- Wetlands: acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 213

- USDA Nat’l Res Conservation Service Soil Survey
- National Wetlands Inventory Maps
- State/Local Wetland Inventory Maps
- FEMA/FIRM Maps:
- 100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)

- Aerial Photographs
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- Other Photographs
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations
- File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 214

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01502
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
- Presence of Run/Riffle/Pool Complexes. Explain: Not present.
- Tributary Geometry: Relatively Straight
- Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

 Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally -sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________ Explain: ____________________________
- Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ____________________________
- Ecological connection Explain: ____________________________
- Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________________
- Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 □ TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
 □ Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 □ Tributary waters Linear Feet: __________ Width (Ft): __________
 □ Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres): __________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________

Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters __________

Explain finding of no Significant Nexus: See Section III.C. __________

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________
☐ Other Non-wetland Waters MBR acres: __________
☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 967.53 linear feet (ft), 4.26 width (ft) acres
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 215

 State: AZ
 County/Parish/borough: Pinal County
 City: N/A

 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam

 Name of watershed or Hydrologic Unit Code (HUC): 15050100

 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a
 different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

 There are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in
 the review area.

 ☑ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

 There are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres
 Wetlands Acres: _______

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered
 jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a
 significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ___________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 4.21754 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through _______ tributaries before entering TNW

 Project waters are _______ (or more) river miles from TNW
U.S Army Corps of Engineers

Feature ID: 215

Project waters are _river_ Miles from tributary to RPW:
Project waters are 30 (or more) _aerial (straight)_ miles from tributary to TNW:
Project waters are _aerial (straight)_ miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [x] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

- Tributary Provides for: Ephemeral Flow
- Estimate average number of flow events in review area/year: 2-5
- Describe Flow Regime: Ephemeral.
- Other Information on Duration and Volume:

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
<th>Discrete and Confined</th>
<th>Characteristics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsurface Flow:</td>
<td>No Explain:</td>
<td></td>
</tr>
</tbody>
</table>

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [x] Sediment deposition
 - [] Water staining
 - Other (list):
- [] Discontinuous? Explain:

<table>
<thead>
<tr>
<th>Presence of litter and debris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>Presence of wrack line</td>
</tr>
<tr>
<td>Sediment sorting</td>
</tr>
<tr>
<td>Scour</td>
</tr>
<tr>
<td>Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>Abrupt change in plant community</td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: _______________
- Mean High water Mark indicated by: _______________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: _______________

Identify Specific Pollutants, if known: _______________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: _______________
- Wetland Fringe Characteristics: _______________

Habitat for:

- Federally Listed Species Explain findings: _______________
- Fish/Spawn Areas Explain findings: _______________
- Other environmentally-sensitive species Explain findings: _______________
- Aquatic/Wildlife diversity Explain: _______________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): _______________
- Wetland Type, Explain: _______________
- Wetland Quality, Explain: _______________

Project Wetlands Cross or Serve as State Boundaries, Explain: _______________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: _______________

Surface Flow is: _______________

Characteristics: _______________

Subsurface Flow: _______________

Explain Findings: _______________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: _______________
 - Ecological connection Explain: _______________
 - Separated by berm/barrier Explain: _______________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: _______________

Project Wetlands: Aerial Miles from TNW: _______________

Flow is From: _______________

Estimate approximate Location of Wetland within Floodplain: _______________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands.
- Check all that apply and provide size estimates in review area:
 - TNWs
 - Wetlands adjacent to TNWs

2. RPWs that flow directly or indirectly into TNWs
- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.
- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
- Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
- Provide acreage estimates for jurisdictional wetland in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
- Provide acreage estimates for jurisdictional wetland in the review area:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 3846.49 linear feet (ft), 9.56 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

☐ USDA Nat'l Res Conservation Service Soil Survey
Citation:

☐ National Wetlands Inventory Maps
Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law
Citation:

☐ Applicable/Supporting Scientific Literature
Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 216
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.28853
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 or more river miles from TNW
 APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 216

Project waters are ______________ river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are ______________ aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Observations of shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __
- Oil or scum line along shore objects __
- Fine shell or debris deposits (foreshore) __
- Physical markings/characteristics __
- Tidal gauges __
- Other __

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ___

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___
- Wetland Fringe Characteristics: ___

Habitat for:

- Federally Listed Species Explain findings: __
- Fish/Spawn Areas Explain findings: __
- Other environmentally-sensitive species Explain findings: __________________________________
- Aquatic/Wildlife diversity Explain: ___

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ___
- Wetland Type, Explain: __
- Wetland Quality, Explain: __

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain: __

Surface Flow is: ___

Characteristics: __

Subsurface Flow: Explain Findings: ___

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: __
- Ecological connection Explain: ___
- Separated by berm/barrier Explain: __

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ___

Project Wetlands: Aerial Miles from TNW: __

Flow is From: ___

Estimate approximate Location of Wetland within Floodplain: ________________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Box Riparian Buffer Characteristics (type, average width):
- Box Vegetation type/percent cover. Explain:
 Habitat for:
 - Box Federally Listed Species Explain:
 - Box Fish/Spawn Areas Explain:
 - Box Other environmentally-sensitive species Explain:
 - Box Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.
Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downdgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 987.34 linear feet (ft), 9.77 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 216</th>
</tr>
</thead>
</table>

USDA Nat'l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

<table>
<thead>
<tr>
<th>100-year Floodplain Elevation is:</th>
<th>(National Geodetic Vertical Datum of 1929)</th>
</tr>
</thead>
</table>

Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations
File No. and Date of Response Letter:

Applicable/Supporting Case Law
Citation:

Applicable/Supporting Scientific Literature
Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 217

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal County</td>
<td>N/A</td>
</tr>
</tbody>
</table>

| Center coordinates of site: | Lat. 32.8482°N | Long. -111.2599°W |

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - ☐ TNWs (new)
 - ☐ Wetlands adjacent to TNWs
 - ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - ☐ Non-RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - ☐ Impoundments of jurisdictional waters
 - ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres
 - Wetlands Acres: _______

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 - ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ___________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Watershed Size (sq mi)</th>
<th>49650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.02043</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW

☑ Tributary flows through 4 tributaries before entering TNW

Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 217

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- o or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []
- Mean High water Mark indicated by: []
- survey to available datum []
- physical markings []
- vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species: []
- Fish/Spawn Areas: []
- Other environmentally sensitive species: []
- Aquatic/Wildlife diversity: []

Explain findings: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: []
- Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection: []
- Ecological connection: []
- Separated by berm/barrier: []

Explain: []

(d) Proximity (Relationship) to TNW

Project wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):
☐ Vegetation type/percent cover. Explain:
Habitat for:
☐ Federally Listed Species Explain:
☐ Fish/Spawn Areas Explain:
☐ Other environmentally-sensitive species Explain:
☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all of its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - [] Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: __________ Width (Ft).
 - [] Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters _______ 572.21 linear feet (ft), 5.24 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 217

USDA Nat’l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations
File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 218
State: AZ
County/Parish/borough: Pinal
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
City: N/A

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02786
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 218

U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:] Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

- Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
- Other (list):

Discontinuous?
Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known:

[]

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): []

Wetland Type, Explain: []

Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: []

Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
 Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs
 - Linear Feet: ____________ Width (ft): ____________ TNW Acres ____________
- Wetlands adjacent to TNWs: Acres: ____________

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ____________
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ____________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: ____________ Width (Ft): ____________
 - Other non-wetland waters: Acres: ____________

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ____________ Width (feet): ____________ Acres: ____________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ____________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ____________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ____________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ____________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), _______ width (ft) 4.42

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 218

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________________ (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 219

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02008
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:
Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):
- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: __________________________
- [] Mean High water Mark indicated by: __________________________
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: __

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: __
- [] Wetland Fringe Characteristics: __

Habitat for:

- [] Federally Listed Species Explain findings: __
- [] Fish/Spawn Areas Explain findings: __
- [] Other environmentally-sensitive species Explain findings: __
- [] Aquatic/Wildlife diversity Explain: __

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __
- Wetland Quality, Explain: __

Project Wetlands Cross or Serve as State Boundaries, Explain: __

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________ Explain: __

Surface Flow is: __________________________

Characteristics: __

Subsurface Flow: __ Explain Findings: __

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain: __
- [] Ecological connection Explain: __
- [] Separated by berm/barrier Explain: __

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __

Estimate approximate Location of Wetland within Floodplain: __
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non-wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters linear feet (ft), width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 219

USDA Nat'l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 22

State: AZ

County/Parish/borough: Pinal

City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTIOIN

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTIOIN

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: □ vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01130
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Average Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes:</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

<table>
<thead>
<tr>
<th>Silts</th>
<th>Sands</th>
<th>Concrete</th>
<th>Muck</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:	Stable.
Presence of Run/Riffle/Pool Complexes. Explain:	Not present.
Tributary Geometry:	Relatively Straight
Tributary Gradient (approximate average slope):	1%

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
</table>

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
<th>Discrete and Confined</th>
<th>Characteristics:</th>
</tr>
</thead>
</table>

Subsurface Flow:

<table>
<thead>
<tr>
<th>No</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Dye (or other) test performed:

<table>
<thead>
<tr>
<th>☐</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary Has (Check all that apply):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed and Banks</td>
<td></td>
</tr>
<tr>
<td>☑ OHWM (check all the apply): OHWM Indicators:</td>
<td></td>
</tr>
<tr>
<td>Clear, natural line impressed on the bank</td>
<td>Presence of litter and debris</td>
</tr>
<tr>
<td>☑ Changes in soil character</td>
<td></td>
</tr>
<tr>
<td>☑ Shelving</td>
<td></td>
</tr>
<tr>
<td>☑ Vegetation matted down, bent or absent</td>
<td></td>
</tr>
<tr>
<td>☑ Leaf litter disturbed or washed away</td>
<td></td>
</tr>
<tr>
<td>☑ Sediment deposition</td>
<td></td>
</tr>
<tr>
<td>☑ Water staining</td>
<td></td>
</tr>
<tr>
<td>☑ Presence of wrack line</td>
<td></td>
</tr>
<tr>
<td>☑ Sediment sorting</td>
<td></td>
</tr>
<tr>
<td>☑ Scour</td>
<td></td>
</tr>
<tr>
<td>☑ Multiple observed or predicted flow events</td>
<td></td>
</tr>
<tr>
<td>☑ Abrupt change in plant community</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other (list):</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>☐ Discontinuous?</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________
- Mean High water Mark indicated by: __________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __________

Identify Specific Pollutants, if known: __________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________
- Wetland Fringe Characteristics: __________

Habitat for:
- Federally Listed Species Explain findings: __________
- Fish/Spawn Areas Explain findings: __________
- Other environmentally-sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: __________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): __________
- Wetland Type, Explain: __________
- Wetland Quality, Explain: __________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________ Explain: __________

Surface Flow is: __________

Characteristics: __________

Subsurface Flow: __________ Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: __________
- Ecological connection Explain: __________
- Separated by berm/barrier Explain: __________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________

Project Wetlands: Aerial Miles from TNW: __________

Flow is From: __________

Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: ___________ Width (ft): ___________ TNW Acres ___________
 - [] Wetlands adjacent to TNWs: Acres: ___________

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ___________
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ___________
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: ___________ Width (Ft): ___________ Acres: ___________
 - [] Other non-wetland waters: Acres: ___________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): ___________ Width (feet): ___________ Acres: ___________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ___________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ___________
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
22

Feature ID: 22

U.S. Army Corps of Engineers

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 382.61 linear feet (ft), 7.12 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 22</th>
</tr>
</thead>
</table>

USDA Nat’l Res Conservation Service Soil Survey
Citation: __________

National Wetlands Inventory Maps
Cite Map Name: __________

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: __________ (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs (Name and Date):**
 - Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs (Name and Date):**
 - Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 220

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICATION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**

 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 25.63946
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**
 - ☐ Tributary flows directly to TNW
 - ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) **General Tributary Characteristics**

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) **Flow**

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

Explain:

Tributary is: Natural

Explain:

Average Depth (ft):

Average Side Slopes: 3:1

Silts

Sands

Concrete

Cobbles

Gravel

Muck

Bedrock Other,

Explain:

Stable.

Presence of Run/Riffle/Pool Complexes. Explain:

Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

Explain:

Tributary is: Natural

Explain:

Average Depth (ft):

Average Side Slopes: 3:1

Silts

Sands

Concrete

Cobbles

Gravel

Muck

Bedrock Other,

Explain:

Stable.

Presence of Run/Riffle/Pool Complexes. Explain:

Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

Explain:

Tributary is: Natural

Explain:

Average Depth (ft):

Average Side Slopes: 3:1

Silts

Sands

Concrete

Cobbles

Gravel

Muck

Bedrock Other,

Explain:

Stable.

Presence of Run/Riffle/Pool Complexes. Explain:

Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

Explain:

Tributary is: Natural

Explain:

Average Depth (ft):

Average Side Slopes: 3:1

Silts

Sands

Concrete

Cobbles

Gravel

Muck

Bedrock Other,

Explain:

Stable.

Presence of Run/Riffle/Pool Complexes. Explain:

Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
 - [] Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: [] Width (ft): []
 - [] Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): []

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Supporting data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Submitted by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 220</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>-checked</th>
<th>USDA Nat'I Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td></td>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td></td>
<td>Aerial Photographs (Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td></td>
<td>Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td></td>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
</tbody>
</table>

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: drainage feature

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc.) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ___________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.06941
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Bedrock
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Explain:

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

Riparian Corridor Characteristics:
Wetland Fringe Characteristics:
Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:
Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
Wetland Flow is:
Surface Flow is:
Characteristics:
Subsurface Flow:
Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

<table>
<thead>
<tr>
<th>D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:</td>
</tr>
<tr>
<td>□ TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________</td>
</tr>
<tr>
<td>□ Wetlands adjacent to TNWs: Acres: __________</td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 □ Tributary waters Linear Feet: __________ Width (Ft).__________ Acres: __________

 □ Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 221

☑ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 221

☐ USDA Nat’l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ______________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 222
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482"N Long. -111.2599"W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There □Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☑ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There □Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☑ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☑ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drains is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.04156
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 - [] Tributary flows directly to TNW
 - [] Tributary flows through [] tributaries before entering TNW
 - [] Project waters are [] river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
- Clear, natural line impressed on the bank
- Changes in soil character
- Shelving
- Vegetation matted down, bent or absent
- Leaf litter disturbed or washed away
- Sediment deposition
- Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community
- Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:
 - Characteristics:
 - Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW:

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________

☐ Wetlands adjacent to TNWs: Acres: __________________________

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: __________ Width (ft): __________ Acres: __________________________

☐ Other non-wetland waters: Acres: __________________________

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): __________ Width (feet): __________ Acres: __________________________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________________________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________________________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON‐JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non‐Jurisdictional Waters

Provide acreage estimates for non‐jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland‐Waters (i.e., rivers, streams):
 length :
 width (ft):
- Other Non‐wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non‐jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non‐wetland waters
 linear feet (ft),
 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

☐ USDA Nat'l Res Conservation Service Soil Survey
 Citation:

☐ National Wetlands Inventory Maps
 Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ___________ (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 223
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___________ Linear Feet ___________ Width (ft) and/or ___________ Acres
 Wetlands Acres: ___________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.06288
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through _______ tributaries before entering TNW

 Project waters are _______ (or more) river miles from TNW

 See Enginee...
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries. Explain:</td>
<td></td>
</tr>
</tbody>
</table>

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain:</td>
</tr>
</tbody>
</table>

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Average Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Bedrock
- Muck
- Other, Explain: |

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics: |

Subsurface Flow: No Explain: |

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list): |

Discontinuous? Explain: |
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ____________________________
- [] Mean High water Mark indicated by: ____________________________
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ____________________________
- [] Wetland Fringe Characteristics: ____________________________

Habitat for:
- [] Federally Listed Species Explain findings: ____________________________
- [] Fish/Spawn Areas Explain findings: ____________________________
- [] Other environmentally -sensitive species Explain findings: ____________________________
- [] Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: ____________________________
Explain: ____________________________
Surface Flow is: ____________________________
Characteristics: ____________________________
Subsurface Flow: ____________________________
Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:
- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW
 - [] Discrete wetland hydrologic connection Explain: ____________________________
 - [] Ecological connection Explain: ____________________________
 - [] Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW: ____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________
Flow is From: ____________________________
Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics: type, average width: [] []
- [] Vegetation type/percent cover. Explain: [] []

Habitat for:
- [] Federally Listed Species Explain: [] []
- [] Fish/Spawn Areas Explain: [] []
- [] Other environmentally-sensitive species Explain: [] []
- [] Aquatic/Wildlife Diversity Explain: [] []

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis: [] []

Wetland acres in total being considered in cumulative analysis: [] []

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>□ TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - □ Tributary waters | Linear Feet: | Width (ft): |
 - □ Other non-wetland waters: | Acres: |

3. Non-RPWs that flow directly or indirectly into TNWs.

- □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 - Length (Linear Feet): | Width (feet): | Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: | Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: | Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- ☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
- ☐ Other Non-wetland Waters MBR acres: _______
- ☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- ☑ Non-wetland waters linear feet (ft), 1266.85 width (ft), 5.45 acres
- ☐ Other waters acres
- ☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- ☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- ☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - ☐ Office Concurs with data sheets/delineation report
 - ☐ Office Does Not Concur with data sheets/delineation report
- ☐ Data Sheets Prepared by the Corps
- ☐ Corps Navigable Water Study
- ☐ US Geological Survey Hydrologic Atlas
 - ☐ USGS NHD Data
 - ☐ USGS 8 and 12 digit HUC Maps
- ☑ US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 223

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 224

<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Center coordinates of site</th>
<th>Name of nearest waterbody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat. 32.8482°N Long. -111.2599°W</td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
</tr>
</tbody>
</table>

- Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

- There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

- There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 - Indicate presence of water of U.S. in review area (Check all the apply):
 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

2. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

3. Limits (boundaries) of Jurisdiction based on:
 - Non-Regulated Waters/Wetlands (check if applicable):
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 - Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 1.57447
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:

 (a) Relationship with TNW
 - □ Tributary flows directly to TNW
 - ✓ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
 Average Width (ft):
 Average Depth (ft):
 Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
 Silts
 Sands
 Concrete
 Muck
 Cobble
 Gravel
 Substrate - Vegetation
 Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:

Tributary Has (Check all that apply):
 Bed and Banks
 OHWM (check all the apply): OHWM Indicators:
 Clear, natural line impressed on the bank
 Changes in soil character
 Shelving
 Vegetation matted down, bent or absent
 Leaf litter disturbed or washed away
 Sediment deposition
 Water staining
 Presence of litter and debris
 Destruction of terrestrial vegetation
 Presence of wrack line
 Sediment sorting
 Scour
 Multiple observed or predicted flow events
 Abrupt change in plant community
Other (list):
Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other
- Mean high water mark indicated by:
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:
Characteristics: Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Giffespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
- [] Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - [] Tributary waters Linear Feet: [] Width (ft): []
 - [] Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 2450.10 linear feet (ft), 7.02 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 224</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED JURISDICTIONAL DETERMINATION FORM</td>
</tr>
<tr>
<td>U.S Army Corps of Engineers</td>
</tr>
</tbody>
</table>

- **USDA Nat’l Res Conservation Service Soil Survey**
 - Citation: []
- **National Wetlands Inventory Maps**
 - Cite Map Name: []
- **State/Local Wetland Inventory Maps**
- **FEMA/FIRM Maps**
- **100-year Floodplain Elevation is:** [] (National Geodetic Vertical Datum of 1929)
- **Aerial Photographs**
 - (Name and Date): [] Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs**
 - (Name and Date): [] Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations**
 - File No. and Date of Response Letter: []
- **Applicable/Supporting Case Law**
 - Citation: []
- **Applicable/Supporting Scientific Literature**
 - Citation: []
 - Other Information, Please Specify: []

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

| Date: | July 5, 2013 |

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

| District/Office | Los Angeles District, File No. Pending |

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

| Site: Drainage Feature 225 | State: AZ | County/Parish/borough: Pinal County | City: N/A |

| Center coordinates of site: | Lat. 32.8482°N | Long. -111.2599°W |

| Name of nearest waterbody: | Gila River between Powers Butte and Gillespie Dam |

| Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: | |

| Name of watershed or Hydrologic Unit Code (HUC): | 15050100 |

- Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

- There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

- There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres
 - Wetlands Acres: _______ Acres

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 - [] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 - Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: __________________________
 - Vegetation: ________
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, then it is jurisdictional.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.02324
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**
 - **(a) Relationship with TNW**
 - Tributary flows directly to TNW: ________
 - Tributary flows through ________ tributaries before entering TNW
 - Project waters are ________ river miles from TNW

APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are 30 (or more)</td>
<td>aerial (straight) miles from tributary to TNW:</td>
<td>Explain:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
<td>Explain:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries.</td>
<td>Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.</td>
<td></td>
</tr>
</tbody>
</table>

b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft): []
- Average Depth (ft): []
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for: Ephemeral Flow</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [X] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [X] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community

Discontinuous? Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

- All wetland(s) being considered in cumulative analysis:
- Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - [] Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: __________ Width (Ft): __________
 - [] Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

The Gila River between Powers Butte and Gillespie Dam.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _____ Acres: _____

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _____ width (ft): _____
☐ Other Non-wetland Waters MBR: acres: _____
☐ Wetlands MBR: acres: _____

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters: 606.49 linear feet (ft), 5.27 width (ft)
☐ Other waters: acres
☐ Wetlands: acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 226

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters __________________ Linear Feet Width (ft) and/or __________ Acres

 Wetlands Acres: ________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00249
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 226

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Feature</th>
<th>ID: 226</th>
</tr>
</thead>
</table>

Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

- **Tributary is:** Natural
 - Explain:

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation

- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

- Explain:

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks

- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

 - Other (list):

- [] Discontinuous?
 - Explain:

Presence of litter and debris

- [] Destruction of terrestrial vegetation

- [] Presence of wrack line

- [] Sediment sorting

- [] Scour

- [] Multiple observed or predicted flow events

- [] Abrupt change in plant community
2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
- Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: __________ Width (Ft): __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR: acres:
- Wetlands MBR: acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters: linear feet (ft), width (ft)
- Other waters: acres
- Wetlands: acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 226</th>
</tr>
</thead>
</table>

- **USDA Nat’l Res Conservation Service Soil Survey**
 - Citation:
- **National Wetlands Inventory Maps**
 - Cite Map Name:
- **State/Local Wetland Inventory Maps**
- **FEMA/FIRM Maps**
- **100-year Floodplain Elevation is:** (National Geodetic Vertical Datum of 1929)
 - Aerial Photographs
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - Other Photographs
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations**
 - File No. and Date of Response Letter:
- **Applicable/Supporting Case Law**
 - Citation:
- **Applicable/Supporting Scientific Literature**
 - Citation:
 - Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDIRECTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 227

State: AZ County/Parish/borough: Pinal County City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02233
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through _______ tributaries before entering TNW
 Project waters are _______ river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck

Other, Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Other (list): Presence of litter and debris

Destruction of terrestrial vegetation
Presence of wrack line
Sediment sorting
Scour
Multiple observed or predicted flow events
Abrupt change in plant community

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally-sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ____________________________
- Ecological connection Explain: ____________________________
- Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):
☐ Vegetation type/percent cover. Explain:

Habitat for:
☐ Federally Listed Species Explain:
☐ Fish/Spawn Areas Explain:
☐ Other environmentally-sensitive species Explain:
☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - [] Wetlands adjacent to TNWs: Acres: __________

2. **RPWs that flow directly or indirectly into TNWs**
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: __________ Width (Ft): __________ Acres: __________
 - [] Other non-wetland waters: Acres: __________

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters acres: 1421.78 linear feet (ft), 4.97 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTIONS IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 227</th>
</tr>
</thead>
</table>

| USDA Nat’l Res Conservation Service Soil Survey | Citation: |
| National Wetlands Inventory Maps | Cite Map Name: |
| State/Local Wetland Inventory Maps |
| FEMA/FIRM Maps: |
| 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929) |
| Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011 |
| Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012 |
| Previous Determinations File No. and Date of Response Letter: |
| Applicable/Supporting Case Law Citation: |
| Applicable/Supporting Scientific Literature Citation: |

| Other Information, Please Specify: |

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 228
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 □ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 □ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a
different JD form.
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 □ Office (Desk) Determination. Date: □ Field Determination. Date(s): 10/2012
SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There □ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in
 the review area.
 □ Waters subject to the ebb and flow of the tide.
 □ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There □ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review
 area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 □ TNWs (new)
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 □ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered
 jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a
 significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.05064
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 228

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td></td>
<td>Project waters are</td>
</tr>
<tr>
<td>Identify flow route to TNW</td>
<td>Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.</td>
</tr>
</tbody>
</table>

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Average Width (ft):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Depth (ft):</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain: |

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

<table>
<thead>
<tr>
<th>Presence of Run/Riffle/Pool Complexes. Explain:</th>
<th>Not present.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary Geometry:</td>
<td>Relatively Straight</td>
</tr>
</tbody>
</table>

| Tributary Gradient (approximate average slope): | 1% |

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate average number of flow events in review area/year:</td>
<td>2-5</td>
</tr>
<tr>
<td>Describe Flow Regime:</td>
<td>Ephemeral.</td>
</tr>
</tbody>
</table>

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

<table>
<thead>
<tr>
<th>Dye (or other) test performed:</th>
<th></th>
</tr>
</thead>
</table>

Tributary Has (Check all that apply):

- Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list): |
 - [] Discontinuous? Explain: |

- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc): Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally -sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): ____________________________
Wetland Type, Explain: ____________________________
Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________
Surface Flow is: ____________________________
Characteristics: ____________________________
Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

 □ Discrete wetland hydrologic connection Explain: ____________________________
 □ Ecological connection Explain: ____________________________
 □ Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________
Flow is From: ____________________________
Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - □ TNWs Linear Feet: ____________________ Width (ft): ____________________ TNW Acres
 - □ Wetlands adjacent to TNWs: Acres: ____________________

2. RPWs that flow directly or indirectly into TNWs
 - □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: ____________________
 - □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ____________________
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - □ Tributary waters Linear Feet: ____________________ Width (ft): ____________________
 - □ Other non-wetland waters: Acres: ____________________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): ____________________ Width (ft): ____________________ Acres: ____________________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ____________________
 - □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ____________________
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ____________________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW.
 - □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ____________________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________
☐ Other Non-wetland Waters MBR acres: __________
☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 892.73 linear feet (ft), 4.06 width (ft)
☐ Other waters __________ acres
☐ Wetlands __________ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 228

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: _ _ _ _ _ _ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

<table>
<thead>
<tr>
<th>Name of Project District Report</th>
<th>229</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>AZ</td>
</tr>
<tr>
<td>County/Parish/borough</td>
<td>Pinal County</td>
</tr>
<tr>
<td>Center coordinates of site</td>
<td></td>
</tr>
<tr>
<td>Lat.</td>
<td>32.8482°N</td>
</tr>
<tr>
<td>Long.</td>
<td>-111.2599°W</td>
</tr>
<tr>
<td>Name of nearest waterbody</td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC):</td>
<td>15050100</td>
</tr>
</tbody>
</table>

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________
 □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00529
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 229

U.S. Army Corps of Engineers

Project waters are **river** Miles from tributary to RPW:

Project waters are 30 (or more) **aerial** (straight) miles from tributary to TNW:

Project waters are **aerial** (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. **Explain:**

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural **Explain:**

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, **Explain:**

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. **Explain:** Stable.

Presence of Run/Riffle/Pool Complexes. **Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined **Characteristics:**

Subsurface Flow: No **Explain:**

- Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- **OHWM (check all the apply):** OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

- Discontinuous? **Explain:**
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally -sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: __________________________
- Surface Flow is: __________________________

Characteristics:

Subsurface Flow: __________________________

Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________________________
 - Ecological connection Explain: __________________________
 - Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: __________________________
- Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (Ft).

☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.
 Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 229

☐ USDA Nat’l Res Conservation Service Soil Survey
Citation:

☐ National Wetlands Inventory Maps
Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 Drainage Feature 23
 State: AZ
 County/Parish/borough: Pinal County
 City: N/A
 Center coordinates of site: Lat. 32.8482°N
 Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.04021
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 - (ii) **Physical Characteristics:**
 - (a) **Relationship with TNW**
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

- Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):

- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- [] High tide line indicated by: __________________________ [] Mean High water Mark indicated by: __________________________
- [] oil or scum line along shore objects [] survey to available datum
- [] fine shell or debris deposits (foreshore) [] physical markings
- [] tidal gauges [] vegetation lines/changes in vegetation types
- [] other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: __________________________
- [] Wetland Fringe Characteristics: __________________________

Habitat for:
- [] Federally Listed Species Explain findings: __________________________
- [] Fish/Spawn Areas Explain findings: __________________________
- [] Other environmentally -sensitive species Explain findings: __________________________
- [] Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW
(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: __________________________ Explain: __________________________
Surface Flow is: __________________________
Characteristics: __________________________
Subsurface Flow: __________________________ Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:
- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW
 - [] Discrete wetland hydrologic connection Explain: __________________________
 - [] Ecological connection Explain: __________________________
 - [] Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW: __________________________
Project Wetlands: Aerial Miles from TNW: __________________________
Flow is From: __________________________
Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinant of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

* Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
* Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
* Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
* Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 230

State:	AZ
County/Parish/borough:	Pinal County
City:	N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):
15050100

- [x] Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

- [] Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There [x] Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- [] Waters subject to the ebb and flow of the tide.
- [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There [x] Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters	Linear Feet	Width (ft) and/or	Acres

 Wetlands Acres: _______________________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 - [x] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 1.75071
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☑ Tributary flows directly to TNW
 ☐ Tributary flows through ______ tributaries before entering TNW

 Project waters are ______ river miles from TNW

 (b) Flow Characteristics

 Average Flow Rate (cfs): ______
 Base Flow Rate (cfs): ______
 Annual Flow Rate (cfs): ______
 Snowmelt Rate (cfs): ______
 Flood Rate (cfs): ______

 (c) Geologic Features

 Bedrock Material: ______
 Soils: ______
 Groundwater: ______

 (d) Vegetation

 Identities: ______
 Cover: ______
 Composition: ______

 (e) Aquatic Ecosystems

 Fauna: ______
 Flora: ______

 (f) Aquatic and Wetland Habitat

 Presence of wetlands: ______
 Presence of riparian zones: ______
 Presence of upland areas: ______

 (g) Other Relevant Information

 Additional comments: ______
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
 Average Width (ft):
 Average Depth (ft):
 Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species
- Fish/Spawn Areas
- Other environmentally-sensitive species
- Aquatic/Wildlife diversity

Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________
Surface Flow is: ____________________________
Characteristics:
Subsurface Flow: ____________________________
Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection
- Ecological connection
- Separated by berm/barrier

Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________
Flow is From: ____________________________
Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):

- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:

- Fish/Spawn Areas Explain:

- Other environmentally-sensitive species Explain:

- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 2766.92 linear feet (ft), 9.67 width (ft) acres: _______

☐ Other waters acres: _______

☐ Wetlands acres: _______

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
| Feature ID: 230 |

- [] USDA Nat'l Res Conservation Service Soil Survey
 Citation:

- [] National Wetlands Inventory Maps
 Cite Map Name:

- [] State/Local Wetland Inventory Maps

- [] FEMA/FIRM Maps:

- [] 100-year Floodplain Elevation is:
 (National Geodetic Vertical Datum of 1929)

- [✓] Aerial Photographs
 (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- [✓] Other Photographs
 (Name and Date): Ground Photos; June through July 2012, September through October 2012

- [] Previous Determinations
 File No. and Date of Response Letter:

- [] Applicable/Supporting Case Law Citation:

- [] Applicable/Supporting Scientific Literature Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 231

State: AZ County/Parish/borough: Pinal City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g, offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres
Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01382
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:

□ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

<table>
<thead>
<tr>
<th>Property</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>High tide line indicated by</td>
<td></td>
</tr>
<tr>
<td>Oil or scum line along shore objects</td>
<td></td>
</tr>
<tr>
<td>Fine shell or debris deposits (foreshore)</td>
<td></td>
</tr>
<tr>
<td>Physical markings/characteristics</td>
<td></td>
</tr>
<tr>
<td>Tidal gauges</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Mean high water mark indicated by</td>
<td></td>
</tr>
<tr>
<td>Survey to available datum</td>
<td></td>
</tr>
<tr>
<td>Physical markings</td>
<td></td>
</tr>
<tr>
<td>Vegetation lines/changes in vegetation types</td>
<td></td>
</tr>
</tbody>
</table>

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain:

Identify Specific Pollutants, if known:

- Explain:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is: Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Option</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Option</th>
<th>Data and Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Data and Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
</tr>
</tbody>
</table>

Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th>Option</th>
<th>Linear Feet</th>
<th>Width (Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary waters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

| Data supporting this conclusion provided at section III.c. |

Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet)</th>
<th>Width (feet)</th>
<th>Acres</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

| Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. |

| Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: |

| Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: |

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. |

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ________ Acres: ________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC.2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: ________ width (ft): ________

☐ Other Non-wetland Waters MBR acres: ________

☐ Wetlands MBR acres: ________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☒ Non-wetland waters 1267.83 linear feet (ft), 4.85 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☒ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

- USDA Nat’l Res Conservation Service Soil Survey
 Citation:

- National Wetlands Inventory Maps
 Cite Map Name:

- State/Local Wetland Inventory Maps

- FEMA/FIRM Maps:

- 100-year Floodplain Elevation is:
 (National Geodetic Vertical Datum of 1929)

- Aerial Photographs
 Name and Date:
 Citations:
 Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- Other Photographs
 Name and Date:
 Citations:
 Ground Photos; June through July 2012, September through October 2012

- Previous Determinations
 File No. and Date of Response Letter:

- Applicable/Supporting Case Law
 Citation:

- Applicable/Supporting Scientific Literature
 Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 232
State: AZ
County/Parish/borough: Pinal
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area
Non-Wetlands waters ______ Linear Feet ______ Width (ft) and/or ______ Acres
Wetlands Acres: ______

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00522
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

Average Width (ft):	
Average Depth (ft):	
Average Side Slopes:	3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- [] Bedrock

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

- [] Discontinuous? Explain:

- [] Other (list):

- [] Discontinuous? Explain:

- [] Other (list):

- [] Discontinuous? Explain:

- [] Other (list):

- [] Discontinuous? Explain:

- [] Other (list):
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 232

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): __________________________
Wetland Type, Explain: __________________________
Wetland Quality, Explain: __________________________
Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________ Explain: __________________________
Surface Flow is: __________________________
Characteristics: __________________________
Subsurface Flow: __________________________ Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________________________
 - Ecological connection Explain: __________________________
 - Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________
Project Wetlands: Aerial Miles from TNW: __________________________
Flow is From: __________________________
Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
 Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet:
 - [] Width (ft):
 - [] TNW Acres

 - [] Wetlands adjacent to TNWs: Acres:

2. **RPWs that flow directly or indirectly into TNWs**

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet:
 - [] Width (ft):

 - [] Other non-wetland waters: Acres:

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):

 - [] Length (Linear Feet):
 - [] Width (feet):
 - [] Acres:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

7. Impoundments of jurisdictional waters.

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Provide estimates for jurisdictional wetland in the review area (in acres):

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
- Other Non-wetland Waters MBR acres: ______
- Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 589.16 linear feet, 3.61 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Conurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 232

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☒ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☒ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 233

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPW that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, the tributary is not a TNW, and no significant nexus exists.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00819
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
- Stable.

Presence of Run/Riffle/Pool Complexes. Explain:
- Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope):
- 1%

(c) Flow

Tributary Provides for:
- Ephemeral Flow

Estimate average number of flow events in review area/year:
- 2-5

Describe Flow Regime:
- Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
- Discrete and Confined

Subsurface Flow:
- No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:
- federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: []

Explain: []

Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(i) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______

☐ Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: ______ Width (ft): ______ Acres: ______

☐ Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), 553.40 width (ft) 3.73

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 233</th>
</tr>
</thead>
</table>

USDA Nat'l Res Conservation Service Soil Survey	Citation:
National Wetlands Inventory Maps	Cite Map Name:
State/Local Wetland Inventory Maps	
FEMA/FIRM Maps	
100-year Floodplain Elevation is:	(National Geodetic Vertical Datum of 1929)

- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 234

State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres
 Wetlands Acres: _______

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.19229
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries. Explain:</td>
<td></td>
</tr>
</tbody>
</table>

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary tributary substrate composition (check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Silts</td>
</tr>
<tr>
<td>☑ Cobble</td>
</tr>
<tr>
<td>☑ Bedrock</td>
</tr>
<tr>
<td>☑ Sands</td>
</tr>
<tr>
<td>☑ Concrete</td>
</tr>
<tr>
<td>☑ Muck</td>
</tr>
<tr>
<td>☑ Gravel</td>
</tr>
<tr>
<td>☑ Substrate - Vegetation</td>
</tr>
<tr>
<td>Other, Explain:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain: Not present.</td>
</tr>
<tr>
<td>Tributary Geometry: Relatively Straight</td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope): 1%</td>
</tr>
</tbody>
</table>

(c) Flow

<table>
<thead>
<tr>
<th>Tributary Provides for: Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate average number of flow events in review area/year: 2-5</td>
</tr>
<tr>
<td>Describe Flow Regime: Ephemeral.</td>
</tr>
</tbody>
</table>

Other Information on Duration and Volume:

<table>
<thead>
<tr>
<th>Surface Flow is: Discrete and Confined Characteristics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsurface Flow: No Explain:</td>
</tr>
<tr>
<td>☐ Dye (or other) test performed:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Has (Check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Bed and Banks</td>
</tr>
<tr>
<td>☑ OHWM (check all the apply): OHWM Indicators:</td>
</tr>
<tr>
<td>☑ Clear, natural line impressed on the bank</td>
</tr>
<tr>
<td>☑ Changes in soil character</td>
</tr>
<tr>
<td>☑ Shelving</td>
</tr>
<tr>
<td>☑ Vegetation matted down, bent or absent</td>
</tr>
<tr>
<td>☑ Leaf litter disturbed or washed away</td>
</tr>
<tr>
<td>☑ Sediment deposition</td>
</tr>
<tr>
<td>☑ Water staining</td>
</tr>
<tr>
<td>☑ Presence of litter and debris</td>
</tr>
<tr>
<td>☑ Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>☑ Presence of wrack line</td>
</tr>
<tr>
<td>☑ Sediment sorting</td>
</tr>
<tr>
<td>☑ Scour</td>
</tr>
<tr>
<td>☑ Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>☑ Abrupt change in plant community</td>
</tr>
<tr>
<td>Other (list):</td>
</tr>
</tbody>
</table>

| ☐ Discontinuous? Explain: |

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks

☑ OHWM (check all the apply): OHWM Indicators:

☑ Clear, natural line impressed on the bank

☑ Changes in soil character

☑ Shelving

☑ Vegetation matted down, bent or absent

☑ Leaf litter disturbed or washed away

☑ Sediment deposition

☑ Water staining

☑ Presence of litter and debris

☐ Destruction of terrestrial vegetation

☐ Presence of wrack line

☐ Sediment sorting

☑ Scour

☐ Multiple observed or predicted flow events

☐ Abrupt change in plant community

Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

☐ High tide line indicated by: ☐ Mean High Water Mark indicated by:
☐ oil or scum line along shore objects ☐ survey to available datum
☐ fine shell or debris deposits (foreshore) ☐ physical markings
☐ physical markings/characteristics ☐ vegetation lines/changes in vegetation types
☐ tidal gauges
☐ other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

☐ Riparian Corridor Characteristics:
☐ Wetland Fringe Characteristics:

Habitat for:

☐ Federally Listed Species Explain findings:
☐ Fish/Spawn Areas Explain findings:
☐ Other environmentally-sensitive species Explain findings:
☐ Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac):
Wetland Type, Explain:
Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:
Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

☐ Wetland Directly Abutting Non-TNW
☐ Wetland Not Directly Abutting Non-TNW
☐ Discrete wetland hydrologic connection Explain:
☐ Ecological connection Explain:
☐ Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional wetlands.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR: acres:
- Wetlands MBR: acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters: 1968.46 linear feet (ft), 7.01 width (ft)
- Other waters
- Wetlands

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 234

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:
Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 235

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Center coordinates of site:</th>
<th>Lat.</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32.8482°N</td>
<td>-111.2599°W</td>
</tr>
</tbody>
</table>

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: ____________________
 - □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**

 (i) **General Area Conditions:**

 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.03472
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 □ Tributary flows directly to TNW

 ✔ Tributary flows through ___ tributaries before entering TNW

 Project waters are ___ river miles from TNW
Feature ID: 235

U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: Explain:
Surface Flow is:
Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
- [] Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: [] Width (Ft): []
 - [] Other non-wetland waters: Acres: []

3. Non-RPWS that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☒ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 235

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 236

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters [] Linear Feet [] Width (ft) and/or [] Acres
 Wetlands Acres: []

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01951
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through ______ tributaries before entering TNW
 Project waters are ______ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- [x] Silts
- [] Sands
- [] Concrete
- [] Muck
- [x] Cobbles
- [] Gravel
- [x] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
- [] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- □ High tide line indicated by: ___________________________
- □ Mean High water Mark indicated by: ___________________
- □ oil or scum line along shore objects
- □ fine shell or debris deposits (foreshore)
- □ physical markings/characteristics
- □ tidal gauges
- □ other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___________________________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- □ Riparian Corridor Characteristics: _______________________
- □ Wetland Fringe Characteristics: _________________________

Habitat for:

- □ Federally Listed Species Explain findings: ___________________
- □ Fish/Spawn Areas Explain findings: _______________________
- □ Other environmentally -sensitive species Explain findings: __________
- □ Aquatic/Wildlife diversity Explain: _______________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ___________________________
- Wetland Type, Explain: _______________________
- Wetland Quality, Explain: _____________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ___________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ___________________________
- Surface Flow is: ___________________________

Characteristics: ___________________________

Subsurface Flow: ___________________________

Explain Findings: ___________________________

(c) Wetland Adjacency Determination with Non-TNW:

- □ Wetland Directly Abutting Non-TNW
- □ Wetland Not Directly Abutting Non-TNW

- □ Discrete wetland hydrologic connection Explain: ___________________________
- □ Ecological connection Explain: ___________________________
- □ Separated by berm/barrier Explain: ___________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ___________________________
- Project Wetlands: Aerial Miles from TNW: ___________________________

Flow is From: ___________________________

Estimate approximate Location of Wetland within Floodplain: ___________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): __________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters __________

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet : _______ width (ft): _______
- Other Non-wetland Waters MBR acres: _______
- Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 947.91 linear feet (ft), 4.80 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

Feature ID: 236

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:
Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal County</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Center coordinates of site:

<table>
<thead>
<tr>
<th>Lat.</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.8482°N</td>
<td>-111.2599°W</td>
</tr>
</tbody>
</table>

Name of nearest waterbody:

Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):

15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)

 ☐ Wetlands adjacent to TNWs

 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

 ☐ Non-RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

 ☐ Impoundments of jurisdictional waters

 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters	Linear Feet	Width (ft) and/or	Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________

☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.11830
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 237

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 Other (list):

Discontinuous? Explain:
237
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ______________________
- Mean High water Mark indicated by: ______________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac):

Wetland Type, Explain:

Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Wetlands adjacent to TNWs
 - Linear Feet: ________ Width (ft): ________ TNW Acres ________
 - Acres: ________

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ________ Width (Ft): ________
 - Other non-wetland waters: Acres: ________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ________ Width (feet): ________ Acres: ________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters []

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
- [] Other Non-wetland Waters MBR acres: []
- [] Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters linear feet (ft), 733.63 width (ft), 12.67
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 237

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: _______ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 238

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ✔ Potentially jurisdictonal waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Watershed Size (sq mi):</th>
<th>49650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Area (sq mi):</td>
<td>0.00746</td>
</tr>
<tr>
<td>Average Annual Rainfall (in):</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in):</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW
☑ Tributary flows through 4 tributaries before entering TNW

Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

Feature ID: 238

Project waters are [] river Miles from tributary to RPW:

Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are [] aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain: []

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation

Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume: []

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed: []

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

Other (list): []

- [] Discontinuous? Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other
- Mean High water Mark indicated by: __________________________
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: __________________________
- Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________

Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________________________
 - Ecological connection Explain: __________________________
 - Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________
Project Wetlands: Aerial Miles from TNW: __________________________
Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

☐ USDA Nat’l Res Conservation Service Soil Survey Citation: []
☐ National Wetlands Inventory Maps Cite Map Name: []
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 239

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are ☑ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are ☑ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters ________ Linear Feet ________ Width (ft) and/or ________ Acres

Wetlands Acres: ________

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi) | 49650 |
 | Drainage Area (sq mi) | 0.31402 |
 | Average Annual Rainfall (in) | 10 |
 | Average Annual Snowfall (in) | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

Feature ID: 239

Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

Average Width (ft):	
Average Depth (ft):	
Average Side Slopes:	3:1

Primary tributary substrate composition (check all that apply):

- [✓] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [✓] Substrate - Vegetation

Other, Explain: |

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year:

2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics: |

Subsurface Flow: No Explain: |

Dye (or other) test performed: |

Tributary Has (Check all that apply):

- [] Bed and Banks
- [✓] OHWM (check all the apply): OHWM Indicators:
 - [✓] Clear, natural line impressed on the bank
 - [✓] Changes in soil character
 - [✓] Shelving
 - [✓] Vegetation matted down, bent or absent
 - [✓] Leaf litter disturbed or washed away
 - [✓] Sediment deposition
 - [✓] Water staining
 - [✓] Presence of litter and debris
 - [✓] Presence of wrack line
 - [✓] Sediment sorting
 - [✓] Scour
 - [✓] Multiple observed or predicted flow events
 - [✓] Abrupt change in plant community

Other (list): |

Discontinuous? Explain: |
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Project Wetland: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Project Wetland: Aerial Miles from TNW:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:
Habitat for:
- □ Federally Listed Species Explain:
- □ Fish/Spawn Areas Explain:
- □ Other environmentally-sensitive species Explain:
- □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs
 - Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 2001.32 linear feet (ft), 10.28 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 239

USDA Nat’l Res Conservation Service Soil Survey
Citation:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations
File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 24

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:

☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___________ Linear Feet Width (ft) and/or ___________ Acres
 Wetlands Acres: ___________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ___________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.03086
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 □ Tributary flows through [] tributaries before entering TNW

 Project waters are [] river miles from TNW
24
Feature ID:

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW:
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks
☒ OHWM (check all the apply): OHWM Indicators:
☐ Clear, natural line impressed on the bank
☒ Changes in soil character
☒ Shelving
☐ Vegetation matted down, bent or absent
☐ Leaf litter disturbed or washed away
☐ Sediment deposition
☐ Water staining

Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW:

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical, and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Width (ft):
 - TNW Acres
 - Wetlands adjacent to TNWs
 - Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Linear Feet:
 - Width (Ft):
 - Other non-wetland waters
 - Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 24</th>
</tr>
</thead>
</table>

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

1. **USDA Nat’l Res Conservation Service Soil Survey**
 - Citation:

2. **National Wetlands Inventory Maps**
 - Cite Map Name:

3. **State/Local Wetland Inventory Maps**

4. **FEMA/FIRM Maps:**

5. **100-year Floodplain Elevation is:**
 - (National Geodetic Vertical Datum of 1929)

6. **Aerial Photographs**
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

7. **Other Photographs**
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

8. **Previous Determinations**
 - File No. and Date of Response Letter:

9. **Applicable/Supporting Case Law**
 - Citation:

10. **Applicable/Supporting Scientific Literature**
 - Citation:

 Other Information, Please Specify:

 Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 240
State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands Acres:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatice resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: []
 [] Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. The aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary adjacent with wetlands complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.01101 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 [] Tributary flows directly to TNW
 [] Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 240

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries.</td>
<td>Explain:</td>
</tr>
</tbody>
</table>

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

| Tributary is: | Natural |

| Tributary properties with respect to top of bank (estimate): |
|---------------|----------|
| Average Width (ft): | |
| Average Depth (ft): | |
| Average Side Slopes: | 3:1 |

Primary tributary substrate composition (check all that apply):

- [] Silts
- [x] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [x] Substrate - Vegetation
- Other, Explain: |

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
</table>

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

| Surface Flow is: | Discrete and Confined |

| Subsurface Flow: | No |

| Dye (or other) test performed: | |

Tributary Has (Check all that apply):

- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [x] Shelving
 - [x] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list): |

- [] Discontinuous? Explain: |
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
 - Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs
 - Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: __________ Width (ft): __________ Acres: __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): length: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 565.88 linear feet (ft), 6.14 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:
Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 241

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site: Lat. 32.8482°N</td>
<td>Long. -111.2599°W</td>
<td></td>
</tr>
<tr>
<td>Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC): 15050100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☑ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00681
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

[] Dye (or other) test performed:

Tributary Has (Check all that apply):

[] Bed and Banks
[] OHWM (check all the apply): OHWM Indicators:
- [] Clear, natural line impressed on the bank
- [] Changes in soil character
- [] Shelving
- [] Vegetation matted down, bent or absent
- [] Leaf litter disturbed or washed away
- [] Sediment deposition
- [] Water staining
- Other (list):
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

[] Discontinuous? Explain:
2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Surface Flow is:

- Characteristics:
- Subsurface Flow:

- Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

- Flow is From:

- Estimate approximate Location of Wetland within Floodplain:

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

Project Wetlands:

- Aerial Miles from TNW:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

- Mean High water Mark indicated by:
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types
(ii) Chemical Characteristics:
Charaterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: _______ Width (ft): _______ TNW Acres _______
 - Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: _______ Width (ft): _______ Acres: _______
 - Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): _______ Width (ft): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ________ Acres: ________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : ________ width (ft): ________
☐ Other Non-wetland Waters MBR acres: ________
☐ Wetlands MBR acres: ________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters ________ linear feet (ft), 241.59 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Approved Jurisdictional Determination Form
U.S Army Corps of Engineers

Feature ID: 241

☐ USDA Nat’l Res Conservation Service Soil Survey
Citation:

☐ National Wetlands Inventory Maps
Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is:
(National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
(Name and Date):
Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs
(Name and Date):
Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law
Citation:

☐ Applicable/Supporting Scientific Literature
Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature
AZ Pinal County N/A
Lat. 32.8482°N Long. -111.2599°W
Gila River between Powers Butte and Gillespie Dam
15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There ☐ "navigable waters of the U.S. " within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There ☐ "waters of the U.S. " within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
2. Non-Regulated Waters/Wetlands (check if applicable):
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________
 □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, it is considered a tributary for the purposes of jurisdiction.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00396
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by:
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other
- [] Mean High water Mark indicated by:
- [] survey to available datum
- [] physical markings
- [] vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics:
- [] Wetland Fringe Characteristics:

Habitat for:

- [] Federally Listed Species Explain findings:
- [] Fish/Spawn Areas Explain findings:
- [] Other environmentally-sensitive species Explain findings:
- [] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

 - [] Discrete wetland hydrologic connection Explain:

 - [] Ecological connection Explain:

 - [] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):
☐ Vegetation type/percent cover. Explain:
Habitat for:
☐ Federally Listed Species Explain:
☐ Fish/Spawn Areas Explain:
☐ Other environmentally-sensitive species Explain:
☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs
 - [] Wetlands adjacent to TNWs

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - [] Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _____ Acres: _____

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _____ width (ft): _____
☐ Other Non-wetland Waters MBR acres: _____
☐ Wetlands MBR acres: _____

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), 597.11 width (ft), 4.30 acres
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 242</th>
</tr>
</thead>
</table>

| USDA Nat'l Res Conservation Service Soil Survey | Citation: |
| National Wetlands Inventory Maps | Cite Map Name: |
| State/Local Wetland Inventory Maps |
| FEMA/FIRM Maps: |
| 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929) |
Aerial Photographs (Name and Date):	Aerials Express Phoenix 2009, BING Aerial Imagery 2011
Other Photographs (Name and Date):	Ground Photos; June through July 2012, September through October 2012
Previous Determinations	File No. and Date of Response Letter:
Applicable/Supporting Case Law Citation:	
Applicable/Supporting Scientific Literature Citation:	

Other Information, Please Specify: |

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 243

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00943
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:
- Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 □ TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______

 □ Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 □ Tributary waters Linear Feet: ______ Width (ft): ______

 □ Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW ______

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet:
 width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft),
 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 243</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td>Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
<td></td>
</tr>
</tbody>
</table>
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 244
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W
Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.63884
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - (ii) Physical Characteristics:
 - (a) Relationship with TNW:
 - Tributary flows directly to TNW
 - Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Feature ID: 244

U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW: Explain:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW: Explain:
Project waters are aerial (straight) miles from tributary to RPW: Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Côbbles
- Sand
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Poll Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
- Clear, natural line impressed on the bank
- Changes in soil character
- Shelving
- Vegetation matted down, bent or absent
- Leaf litter disturbed or washed away
- Sediment deposition
- Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High Water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:

Naturalized other shell debris
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 [] TNWs Linear Feet: Width (ft): TNW Acres
 [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review are (check all that apply):
 [] Tributary waters Linear Feet: Width (Ft).
 [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet: 814.02 width (ft): 9.05
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 244</th>
</tr>
</thead>
</table>

USDA Nat’l Res Conservation Service Soil Survey

Citation:

<table>
<thead>
<tr>
<th>National Wetlands Inventory Maps</th>
<th>Cite Map Name:</th>
</tr>
</thead>
</table>

| State/Local Wetland Inventory Maps |

| FEMA/FIRM Maps: |

<table>
<thead>
<tr>
<th>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Aerial Photographs</th>
<th>(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other Photographs</th>
<th>(Name and Date): Ground Photos; June through July 2012, September through October 2012</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law</th>
<th>Citation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Scientific Literature</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 245

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site:</td>
<td>Lat. 32.8482°N</td>
<td>Long. -111.2599°W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest waterbody:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC):</td>
<td>15050100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- ☐ Office (Desk) Determination. Date:
- ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 - ☐ TNWs (new)
 - ☐ Wetlands adjacent to TNWs
 - ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - ☐ Non-RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands adjacent to non-RPWS that flow directly or indirectly into TNWs
 - ☐ Impoundments of jurisdictional waters
 - ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 - Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS
A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW:
 \(\square \) Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 \[
 \begin{array}{|c|c|}
 \hline
 \text{Watershed Size (sq mi)} & 49650 \\
 \text{Drainage Area (sq mi)} & 0.46960 \\
 \text{Average Annual Rainfall (in)} & 10 \\
 \text{Average Annual Snowfall (in)} & 0 \\
 \hline
 \end{array}
 \]
 (ii) Physical Characteristics:
 \(\square \) Relationship with TNW
 \(\checkmark \) Tributary flows directly to TNW
 \(\checkmark \) Tributary flows through \(4 \) tributaries before entering TNW
 Project waters are \(30 \) (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz flats through ephemeral tributaries, tributary to Picacho reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

| Average Width (ft): |
| Average Depth (ft): |
| Average Side Slopes: | 3:1 |

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/PooI Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Subsurface Flow: No
Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):
 - Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________
- Wetland Type, Explain: __________
- Wetland Quality, Explain: __________

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________ Explain: __________

Surface Flow is:

Characteristics: __________

Subsurface Flow: __________ Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
 - Discrete wetland hydrologic connection Explain: __________
 - Ecological connection Explain: __________
 - Separated by berm/ barrier Explain: __________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________

Project Wetlands: Aerial Miles from TNW: __________

Flow is From: __________

Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT Nexus DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______
- Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters Linear Feet: ______ Width (ft): ______
 - Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): __________ linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR _______ acres:

☐ Wetlands MBR _______ acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters _______ 952.52 linear feet (ft), _______ 13.76 width (ft)

☐ Other waters _______ acres

☐ Wetlands _______ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 245</th>
</tr>
</thead>
</table>

- **USDA Nat'l Res Conservation Service Soil Survey**
 - Citation:
- **National Wetlands Inventory Maps**
 - Cite Map Name:
- **State/Local Wetland Inventory Maps**
- **FEMA/FIRM Maps**:
- **100-year Floodplain Elevation is**:
 - (National Geodetic Vertical Datum of 1929)
- **Aerial Photographs**
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs**
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations**
 - File No. and Date of Response Letter:
- **Applicable/Supporting Case Law**
 - Citation:
- **Applicable/Supporting Scientific Literature**
 - Citation:
 - Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 246

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No" navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No" waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS
A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW: [] Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 24.40403
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 [] Tributary flows directly to TNW
 [] Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 246

<table>
<thead>
<tr>
<th>Feature</th>
<th>Jurisdictional Determination Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Corps of Engineers</td>
<td></td>
</tr>
</tbody>
</table>

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain: |

Identify flow route to TNW towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):
- **Silts**
- **Cobbles**
- **Bedrock**
- **Sands**
- **Concrete**
- **Gravel**
- **Substrate - Vegetation**
- **Muck**
- **Other, Explain:**

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined
Subsurface Flow: No
Dye (or other) test performed:

Tributary Has (Check all that apply):
- **Bed and Banks**
- **OHWM (check all the apply): OHWM Indicators:**
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
- **Presence of litter and debris**
- **Destruction of terrestrial vegetation**
- **Presence of wrack line**
- **Sediment sorting**
- **Scour**
- **Multiple observed or predicted flow events**
- **Abrupt change in plant community**
- **Other (list):**

Discontinuous? Explain:

Note: The above text is a screenshot of a form filled out with specific data points. It provides detailed information about a tributary, including its physical characteristics, flow regime, and environmental impacts. The form is used for jurisdictional determination purposes by the U.S. Army Corps of Engineers.
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: □
- Mean High water Mark indicated by: □
- oil or scum line along shore objects □
- fine shell or debris deposits (foreshore) □
- physical markings/characteristics □
- tidal gauges □
- other □

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain: __
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width): __
- [] Vegetation type/percent cover. Explain: ___

Habitat for:

- [] Federally Listed Species Explain: ___
- [] Fish/Spawn Areas Explain: __
- [] Other environmentally-sensitive species Explain: __
- [] Aquatic/Wildlife Diversity Explain: ___

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis: __

Wetland acres in total being considered in cumulative analysis: __

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: _______ Width (ft): _______ TNW Acres _______
- Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters Linear Feet: _______ Width (Ft): _______
- Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres): __________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________

Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________

☐ Other Non-wetland Waters MBR acres: __________

☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 2750.38 linear feet (ft), 17.36 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>246</th>
</tr>
</thead>
</table>

USDA Nat'l Res Conservation Service Soil Survey	Citation:
National Wetlands Inventory Maps	Cite Map Name:
State/Local Wetland Inventory Maps	
FEMA/FIRM Maps:	
100-year Floodplain Elevation is:	(National Geodetic Vertical Datum of 1929)
✔ Aerial Photographs (Name and Date):	Aerials Express Phoenix 2009, BING Aerial Imagery 2011
✔ Other Photographs (Name and Date):	Ground Photos; June through July 2012, September through October 2012
Previous Determinations File No. and Date of Response Letter:	
Applicable/Supporting Case Law Citation:	
Applicable/Supporting Scientific Literature Citation:	
Other Information, Please Specify:	

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. **REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)**
 July 5, 2013

B. **DISTRICT OFFICE, FILE NAME, AND NUMBER**
 Los Angeles District, File No. Pending

C. **PROJECT LOCATION AND BACKGROUND INFORMATION:**
 Drainage Feature
 247

 State: AZ
 County/Parish/borough: Pinal County
 City: N/A

 Center coordinates of site:
 Lat.: 32.8482°N
 Long.: -111.2599°W

 Name of nearest waterbody:
 Gila River between Powers Butte and Gillespie Dam

 Name of watershed or Hydrologic Unit Code (HUC):
 15050100

 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ❑ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. **RHA SECTION 10 DETERMINATION OF JURISDICTION**

 There **No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

 ❑ Waters subject to the ebb and flow of the tide.
 ❑ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. **CWA SECTION 404 DETERMINATION OF JURISDICTION**

 There **No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

 1. **Waters of the U.S.**

 a. **Indicate presence of water of U.S. in review area (Check all the apply):**

 ☑ TNWs (new)
 ☑ Wetlands adjacent to TNWs
 ☑ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☑ Non-RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☑ Impoundments of jurisdictional waters
 ☑ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. **Identify (estimate) size of waters of the U.S. in the review area**

 Non-Wetlands waters [] Linear Feet [] Width (ft) and/or [] Acres

 Wetlands Acres: []

 c. **Limits (boundaries) of Jurisdiction based on:**

 2. **Non-Regulated Waters/Wetlands (check if applicable):**

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: __ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.10777
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

Project waters are 30 (or more) river miles from TNW
Project waters are [] river Miles from tributary to RPW:
Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are [] aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

Average Width (ft):	
Average Depth (ft):	
Average Side Slopes:	3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
</table>

Describe Flow Regime: Ephemeral.

Estimate average number of flow events in review area/year: 2-5

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 247

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- □ High tide line indicated by: ____________________________
- □ Mean High water Mark indicated by: ____________________________
- □ Oil or scum line along shore objects
- □ Fine shell or debris deposits (foreshore)
- □ Physical markings/characteristics
- □ Tidal gauges
- □ Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known:

__

(iv) Biological Characteristics. Channel supports (check all that apply):

□ Riparian Corridor Characteristics: ____________________________

□ Wetland Fringe Characteristics: ____________________________

Habitat for:

- □ Federally Listed Species Explain findings: ____________________________
- □ Fish/Spawn Areas Explain findings: ____________________________
- □ Other environmentally sensitive species Explain findings: ____________________________
- □ Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

□ Wetland Directly Abutting Non-TNW

□ Wetland Not Directly Abutting Non-TNW

- □ Discrete wetland hydrologic connection Explain: ____________________________
- □ Ecological connection Explain: ____________________________
- □ Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Wetlands adjacent to TNWs:</th>
<th>Acres:</th>
</tr>
</thead>
</table>

2. RPWs that flow directly or indirectly into TNWs

| Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: |

| Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: |

| Provide estimates for jurisdictional waters in the review area (check all that apply): |

<table>
<thead>
<tr>
<th>Tributary waters</th>
<th>Linear Feet:</th>
<th>Width (Ft):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other non-wetland waters:</th>
<th>Acres:</th>
</tr>
</thead>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

| Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. |

Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet):</th>
<th>Width (feet):</th>
<th>Acres:</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

| Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. |

| Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: |

| Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: |

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. |

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
- [] Other Non-wetland Waters MBR acres: []
- [] Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters 1094.93 linear feet (ft), 8.73 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 247</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat'1 Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
</tbody>
</table>

- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law Citation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Scientific Literature Citation:</th>
</tr>
</thead>
</table>

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 248
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W
Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☑ Check if map/diagram of review are and/or potential jurisdiciional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area
Non-Wetlands waters Linear Feet Width (ft) and/or Acres
Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: _________________________ ■ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.01448
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 - □ Tributary flows directly to TNW
 - ✔ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

[] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
Other (list):

[] Discontinuous? Explain:

[] Presence of litter and debris
[] Destruction of terrestrial vegetation
[] Presence of wrack line
[] Sediment sorting
[] Scour
[] Multiple observed or predicted flow events
[] Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
 - Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - [] TNWs
 - [] Wetlands adjacent to TNWs

2. **RPWs that flow directly or indirectly into TNWs**

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - [] Other non-wetland waters

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 979.67 linear feet (ft), width (ft):
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concsurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:
Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICATION DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 249

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain:

 Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

 This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

 The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

 A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

 If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04369
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 ☐ Tributary flows directly to TNW
 Project waters are 30 (or more) river miles from TNW
PROJECT WATERS ARE 30 (OR MORE) AERIAL (STRAIGHT) MILES FROM TRIBUTARY TO RPW:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary is</td>
<td>Natural</td>
</tr>
<tr>
<td>Tributary properties with respect to top of bank (estimate):</td>
<td></td>
</tr>
<tr>
<td>Average Width (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes</td>
<td>3:1</td>
</tr>
<tr>
<td>Primary tributary substrate composition (check all that apply):</td>
<td></td>
</tr>
<tr>
<td>Silts</td>
<td></td>
</tr>
<tr>
<td>Sands</td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td></td>
</tr>
<tr>
<td>Muck</td>
<td></td>
</tr>
<tr>
<td>Substrate - Vegetation</td>
<td></td>
</tr>
<tr>
<td>Other, Explain:</td>
<td></td>
</tr>
<tr>
<td>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]</td>
<td></td>
</tr>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain:</td>
<td>Not present.</td>
</tr>
<tr>
<td>Tributary Geometry</td>
<td>Relatively Straight</td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope):</td>
<td>1%</td>
</tr>
</tbody>
</table>

(c) Flow:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary Provides for</td>
<td>Ephemeral Flow</td>
</tr>
<tr>
<td>Estimate average number of flow events in review area/year:</td>
<td>2-5</td>
</tr>
<tr>
<td>Describe Flow Regime</td>
<td>Ephemeral.</td>
</tr>
<tr>
<td>Other Information on Duration and Volume:</td>
<td></td>
</tr>
<tr>
<td>Surface Flow is</td>
<td>Discrete and Confined</td>
</tr>
<tr>
<td>Subsurface Flow</td>
<td>No</td>
</tr>
<tr>
<td>Dye (or other) test performed:</td>
<td></td>
</tr>
<tr>
<td>Tributary Has (Check all that apply):</td>
<td></td>
</tr>
<tr>
<td>Bed and Banks</td>
<td></td>
</tr>
<tr>
<td>OHWM (check all the apply): OHWM Indicators:</td>
<td></td>
</tr>
<tr>
<td>Clear, natural line impressed on the bank</td>
<td></td>
</tr>
<tr>
<td>Changes in soil character</td>
<td></td>
</tr>
<tr>
<td>Shelving</td>
<td></td>
</tr>
<tr>
<td>Vegetation matted down, bent or absent</td>
<td></td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
<td></td>
</tr>
<tr>
<td>Sediment deposition</td>
<td></td>
</tr>
<tr>
<td>Water staining</td>
<td></td>
</tr>
<tr>
<td>Presence of litter and debris</td>
<td></td>
</tr>
<tr>
<td>Destruction of terrestrial vegetation</td>
<td></td>
</tr>
<tr>
<td>Presence of wrack line</td>
<td></td>
</tr>
<tr>
<td>Sediment sorting</td>
<td></td>
</tr>
<tr>
<td>Scour</td>
<td></td>
</tr>
<tr>
<td>Multiple observed or predicted flow events</td>
<td></td>
</tr>
<tr>
<td>Abrupt change in plant community</td>
<td></td>
</tr>
<tr>
<td>Other (list):</td>
<td></td>
</tr>
<tr>
<td>Discontinuous? Explain:</td>
<td></td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________
- Oil or scum line along shore objects: ____________________
- Fine shell or debris deposits (foreshore): ____________________
- Physical markings/characteristics: ____________________
- Tidal gauges: ____________________
- Other: ____________________
- Mean high water mark indicated by: ____________________
- Survey to available datum: ____________________
- Physical markings: ____________________
- Vegetation lines/changes in vegetation types: ____________________

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain: ____________________
- Identify specific pollutants, if known: ____________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________
- Wetland Fringe Characteristics: ____________________

Habitat for:

- Federally Listed Species Explain findings: ____________________
- Fish/Spawn Areas Explain findings: ____________________
- Other environmentally sensitive species Explain findings: ____________________
- Aquatic/Wildlife diversity Explain: ____________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

- Properties:
 - Wetland Size (ac): ____________________
 - Wetland Type, Explain: ____________________
 - Wetland Quality, Explain: ____________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________ Explain: ____________________
- Surface Flow is: ____________________
- Characteristics: ____________________
- Subsurface Flow: ____________________ Explain Findings: ____________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________________
 - Ecological connection Explain: ____________________
 - Separated by berm/barrier Explain: ____________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________
- Project Wetlands: Aerial Miles from TNW: ____________________
- Flow is: ____________________
- Estimate approximate location of wetland within floodplain: ____________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - ☐ TNWs Linear Feet: Width (ft): TNW Acres
 - ☐ Wetlands adjacent to TNWs: Acres:

2. **RPWs that flow directly or indirectly into TNWs**

 - ☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - ☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - ☐ Tributary waters Linear Feet: Width (Ft).
 - ☐ Other non-wetland waters: Acres:

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 - ☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 - ☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - ☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - ☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 - ☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

List of wetland factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 1017.80 linear feet (ft), 6.44 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Consents with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 249

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 25

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - ☐ TNWs (new)
 - ☐ Wetlands adjacent to TNWs
 - ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - ☐ Non-RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - ☐ Impoundments of jurisdictional waters
 - ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 - Identify TNW: []
 - ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.17982
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 - ☐ Relationship with TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
- Clear, natural line impressed on the bank
- Changes in soil character
- Shelving
- Vegetation matted down, bent or absent
- Leaf litter disturbed or washed away
- Sediment deposition
- Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):

☐ Discontinuous? Explain:

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- ☐ Riparian Buffer Characteristics (type, average width):
- ☐ Vegetation type/percent cover. Explain:
- ☐ Habitat for:
 - ☐ Federally Listed Species Explain:
 - ☐ Fish/Spawn Areas Explain:
 - ☐ Other environmentally-sensitive species Explain:
 - ☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downdrgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs
 Linear Feet:
 Width (ft):
 TNW Acres:

- Wetlands adjacent to TNWs
 Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 Linear Feet:
 Width (Ft):
 - Other non-wetland waters
 Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet):
 Width (feet):
 Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area:
 Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area:
 Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 25

☑ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 933.76 linear feet (ft), 13.10 width (ft)

☐ Other waters

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 25</th>
</tr>
</thead>
</table>

	USDA Nat'l Res Conservation Service Soil Survey	
	National Wetlands Inventory Maps	Cite Map Name:
	State/Local Wetland Inventory Maps	
	FEMA/FIRM Maps:	
	100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)	
	Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011	
	Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012	
	Previous Determinations	File No. and Date of Response Letter:
	Applicable/Supporting Case Law	Citation:
	Applicable/Supporting Scientific Literature	Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 250
State: AZ
County/Parish/borough: Pinal
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00396
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Approved Jurisdictional Determination Form

Feature ID: 250

Project waters are [] river Miles from tributary to RPW:

Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are [] aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation

Other, Explain: Stable.

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

- **Tributary Provides for:** Ephemeral Flow
- **Describe Flow Regime:** Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

- [] Dye (or other) test performed:

- **Tributary Has (Check all that apply):**

 - [] Bed and Banks
 - [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list):

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ______________________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ______________________________________
- Wetland Fringe Characteristics: ______________________________________

Habitat for:

- Federally Listed Species Explain findings: ______________________________________
- Fish/Spawn Areas Explain findings: ______________________________________
- Other environmentally-sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ______________________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________ Explain: ____________________________
- Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________________________
 - Ecological connection Explain: ____________________________
 - Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________________
- Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: _______ Width (ft): _______ TNW Acres _______
 - Wetlands adjacent to TNWs: Acres: _______

2. **RPWs that flow directly or indirectly into TNWs**

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: _______ Width (ft): _______
 - Other non-wetland waters: Acres: _______

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
250

Feature ID: [250]

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
☐ Other Non-wetland Waters MBR acres: []
☐ Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 43.58 linear feet (ft), 2.47 width (ft)
☐ Other waters [] acres
☐ Wetlands [] acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ____________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:
Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 251

| State: | AZ | County/Parish/borough: | Pinal County |
| City: | N/A |

Center coordinates of site: Lat. 32.8482"N Long. -111.2599"W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Draining is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ________________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.09409
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects:
- Fine shell or debris deposits (foreshore):
- Physical markings/characteristics:
- Tidal gauges:
- Other:

- Mean High water Mark indicated by:
- Survey to available datum:
- Physical markings:
- Vegetation lines/changes in vegetation types:

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW:
- Wetland Not Directly Abutting Non-TNW:

Discrete wetland hydrologic connection Explain:

Ecological connection Explain:

Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Hi tide line indicated by:

Mean High water Mark indicated by:

Physical markings:

Vegetation lines/changes in vegetation types:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:

Identify Specific Pollutants, if known:

Riparian Corridor Characteristics:

Wetland Fringe Characteristics:

Federally Listed Species Explain findings:

Fish/Spawn Areas Explain findings:

Other environmentally sensitive species Explain findings:

Aquatic/Wildlife diversity Explain:

Wetland Size (ac):

Wetland Type, Explain:

Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

Discrete wetland hydrologic connection Explain:

Ecological connection Explain:

Separated by berm/barrier Explain:

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- ☐ Riparian Buffer Characteristics (type, average width):
- ☐ Vegetation type/percent cover. Explain:

Habitat for:
- ☐ Federally Listed Species Explain:
- ☐ Fish/Spawn Areas Explain:
- ☐ Other environmentally-sensitive species Explain:
- ☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downward flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres
☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (Ft).
☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 251

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATEDWATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland-Waters (i.e., rivers, streams): length:
 width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 605.56 linear feet (ft), 13.29 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ______________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 252

State: AZ County/Parish/borough: Pinal County City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTIOIN III: CWA ANALYSIS
A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, this determination must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 1.71649
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 252

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):

Average Width (ft):

Average Depth (ft):

Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

- Mean High water Mark indicated by:
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage.
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs
 - Wetlands adjacent to TNWs:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 - Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters
 - Other non-wetland waters:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 - Provide estimates of jurisdictional waters within the review area (check all that apply):

 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Provide acreage estimates for jurisdictional wetland in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 - Provide acreage estimates for jurisdictional wetland in the review area:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _____ Acres: _____

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _____ width (ft): _____

☐ Other Non-wetland Waters MBR acres: _____

☐ Wetlands MBR acres: _____

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 663.14 linear feet (ft), 17.29 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 252</th>
</tr>
</thead>
</table>

Feature ID: 252

APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Cops of Engineers

- **USDA Nat'l Res Conservation Service Soil Survey**
 - Citation:

- **National Wetlands Inventory Maps**
 - Cite Map Name:

- **State/Local Wetland Inventory Maps**

- **FEMA/FIRM Maps:**

- **100-year Floodplain Elevation** is: [] (National Geodetic Vertical Datum of 1929)
 - **Aerial Photographs**
 - **(Name and Date):** Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - **Other Photographs**
 - **(Name and Date):** Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 - File No. and Date of Response Letter:

- **Applicable/Supporting Case Law**
 - Citation:

- **Applicable/Supporting Scientific Literature**
 - Citation:

 - **Other Information, Please Specify:**

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 253

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters [] Linear Feet [] Width (ft) and/or [] Acres

 Wetlands Acres: []

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs
The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)
This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01487
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain: Stable.

Tributary Condition/Stability [e.g., highly eroding, sloughing banks.]

Presence of Run/Riffle/Pool Complexes.
- Explain: Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope):
- 1%

Flow

Tributary Provides for:
- Ephemeral Flow

Estimate average number of flow events in review area/year:
- 2-5

Describe Flow Regime:
- Ephemeral.

Surface Flow is:
- Discrete and Confined

Subsurface Flow:
- No

Dye (or other) test performed:

Tributary Has (check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________
- Mean High water Mark indicated by: __________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________

Identify Specific Pollutants, if known: __________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________
- Wetland Fringe Characteristics: __________

Habitat for:
- Federally Listed Species
- Fish/Spawn Areas
- Other environmentally-sensitive species
- Aquatic/Wildlife diversity

Explain findings: __________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________
- Wetland Type, Explain: __________
- Wetland Quality, Explain: __________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________

Surface Flow is: __________

Characteristics: __________

Subsurface Flow: __________

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection
 - Ecological connection
 - Separated by berm/barrier

Explain: __________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________

Project Wetlands: Aerial Miles from TNW: __________

Flow is From: __________

Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- □ TNWs Linear Feet: __________________ Width (ft): ______ TNW Acres ______
- □ Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

- □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
- □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______

Provide estimates for jurisdictional waters in the review area (check all that apply):

- □ Tributary waters Linear Feet: ______ Width (Ft). ______
- □ Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

- □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

- □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______

- □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters linear feet (ft), width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- [] Office Concors with data sheets/delineation report
- [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 253

U.S Army Corps of Engineers

☐ USDA Nat’l Res Conservation Service Soil Survey
 Citation: ____________________________

☐ National Wetlands Inventory Maps
 Cite Map Name: ________________________

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps: ________________________

☐ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter: ____________________________

☐ Applicable/Supporting Case Law Citation: ____________________________

☐ Applicable/Supporting Scientific Literature Citation: ____________________________

 Other Information, Please Specify: ____________________________

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 254

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

Findings:
There ☐ Are No “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

Findings:
There ☐ Are No “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS
A. TNWs AND WETLANDS ADJACENT TO TNWs
The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
Identify TNW: ____________________________ □ Vegetation
Summarize rationale supporting determination:

2. Wetland adjacent to TNW
Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)
This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
(a) General Area Conditions:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.01641</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

□ Tributary flows directly to TNW
☑ Tributary flows through ___ tributaries before entering TNW

Project waters are ___ river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

| Feature ID: 254 |

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

| Tributary properties with respect to top of bank (estimate): |
|------------------|------------------|
| Average Width (ft): | |
| Average Depth (ft): | |
| Average Side Slopes: | 3:1 |

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain: |

| Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:|
|------------------|------------------|
| Stable. |

| Presence of Run/Riffle/Pool Complexes. Explain:|
|------------------|------------------|
| Not present. |

| Tributary Geometry: |
|------------------|------------------|
| Relatively Straight |

| Tributary Gradient (approximate average slope): |
|------------------|------------------|
| 1% |

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
</table>

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
<th>Discrete and Confined</th>
<th>Characteristics:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Subsurface Flow:</th>
<th>No</th>
</tr>
</thead>
</table>

| Dye (or other) test performed: |
|------------------|------------------|

| Tributary Has (Check all that apply): |
|------------------|------------------|

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

| Other (list): |
|------------------|------------------|

<table>
<thead>
<tr>
<th>Discontinuous?</th>
<th>Explain:</th>
</tr>
</thead>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________
- Mean High water Mark indicated by: __________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________

Identify Specific Pollutants, if known: __________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________
- Wetland Fringe Characteristics: __________

Habitat for:

- Federally Listed Species Explain findings: __________
- Fish/Spawn Areas Explain findings: __________
- Other environmentally -sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: __________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________
- Wetland Type, Explain: __________
- Wetland Quality, Explain: __________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________ Explain: __________

Surface Flow is: __________

Characteristics: __________

Subsurface Flow: __________ Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________
 - Ecological connection Explain: __________
 - Separated by berm/barrier Explain: __________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________

Project Wetlands: Aerial Miles from TNW: __________

Flow is From: __________

Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: __________ Width (ft): __________ TNW Acres: __________

☐ Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ____________________________

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ____________________________

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: __________ Width (ft): __________ Acres: __________

☐ Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ____________________________

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ____________________________

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres): □

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: □

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): □ Acres: □

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters □

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: □ width (ft): □
☐ Other Non-wetland Waters MBR acres: □
☐ Wetlands MBR acres: □

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 54.98 linear feet (ft), 2.42 width (ft)
☐ Other waters acres □
☐ Wetlands acres □

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 254

☐ USDA Nat’l Res Conservation Service Soil Survey
 Citation: ____________________________

☐ National Wetlands Inventory Maps
 Cite Map Name: ____________________________

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps: ____________________________

☐ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
 Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs
 Name and Date: Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
 File No. and Date of Response Letter: ____________________________

☐ Applicable/Supporting Case Law
 Citation: ____________________________

☐ Applicable/Supporting Scientific Literature
 Citation: ____________________________

 Other Information, Please Specify: ____________________________

Additional Comments to Support JD:

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 255

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: _____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.86799
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
 Average Width (ft):
 Average Depth (ft):
 Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
 ✗ Silts ☐ Sands ☐ Concrete ☐ Muck
 ☐ Cobble ☐ Gravel ✗ Substrate - Vegetation Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
 Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
 Tributary Gradient (approximate average slope): 1%
(c) Flow:
 Tributary Provides for: Ephemeral Flow
 Estimate average number of flow events in review area/year: 2-5
 Describe Flow Regime: Ephemeral.
 Other Information on Duration and Volume:
 Surface Flow is: Discrete and Confined Characteristics:
 Subsurface Flow: No Explain:
 ☐ Dye (or other) test performed:
 Tributary Has (Check all that apply):
 ☐ Bed and Banks
 ☑ OHWM (check all the apply): OHWM Indicators:
 ✗ Clear, natural line impressed on the bank
 ☑ Changes in soil character
 ☐ Shelving
 ☐ Vegetation matted down, bent or absent
 ☐ Leaf litter disturbed or washed away
 ☐ Sediment deposition
 ☐ Water staining
 Other (list):
 ☐ Discontinuous? Explain:
 Presence of litter and debris
 ☐ Destruction of terrestrial vegetation
 ☐ Presence of wrack line
 ☐ Sediment sorting
 ☐ Scour
 ☐ Multiple observed or predicted flow events
 ☐ Abrupt change in plant community
 ☐ Other (list):
 ☐ Discontinuous? Explain:
 Presence of litter and debris
 ☐ Destruction of terrestrial vegetation
 ☐ Presence of wrack line
 ☐ Sediment sorting
 ☐ Scour
 ☐ Multiple observed or predicted flow events
 ☐ Abrupt change in plant community
 ☐ Other (list):
 ☐ Discontinuous? Explain:
 Presence of litter and debris
 ☐ Destruction of terrestrial vegetation
 ☐ Presence of wrack line
 ☐ Sediment sorting
 ☐ Scour
 ☐ Multiple observed or predicted flow events
 ☐ Abrupt change in plant community
 ☐ Other (list):
 ☐ Discontinuous? Explain:
 Presence of litter and debris
 ☐ Destruction of terrestrial vegetation
 ☐ Presence of wrack line
 ☐ Sediment sorting
 ☐ Scour
 ☐ Multiple observed or predicted flow events
 ☐ Abrupt change in plant community
 ☐ Other (list):
 ☐ Discontinuous? Explain:
 Presence of litter and debris
 ☐ Destruction of terrestrial vegetation
 ☐ Presence of wrack line
 ☐ Sediment sorting
 ☐ Scour
 ☐ Multiple observed or predicted flow events
 ☐ Abrupt change in plant community
 ☐ Other (list):
 ☐ Discontinuous? Explain:
 Presence of litter and debris
 ☐ Destruction of terrestrial vegetation
 ☐ Presence of wrack line
 ☐ Sediment sorting
 ☐ Scour
 ☐ Multiple observed or predicted flow events
 ☐ Abrupt change in plant community
 ☐ Other (list):
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________
- Mean High water Mark indicated by: __________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________
- Wetland Fringe Characteristics: __________

Habitat for:

- Federally Listed Species Explain findings: __________
- Fish/Spawn Areas Explain findings: __________
- Other environmentally-sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: __________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________
- Wetland Type, Explain: __________
- Wetland Quality, Explain: __________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________

Surface Flow is: __________

Characteristics: __________

Subsurface Flow: __________

Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: __________
- Ecological connection Explain: __________
- Separated by berm/barrier Explain: __________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________

Project Wetlands: Aerial Miles from TNW: __________

Flow is From: __________

Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):

- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:

- Fish/Spawn Areas Explain:

- Other environmentally-sensitive species Explain:

- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wetlands adjacent to TNWs</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</th>
</tr>
</thead>
</table>

Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th>Tributary waters</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other non-wetland waters</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Length (Linear Feet):</th>
<th>Width (feet):</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area: Acres:</th>
</tr>
</thead>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): ______ linear feet: ______ width (ft): ______
- [] Other Non-wetland Waters MBR ______ acres:
- [] Wetlands MBR ______ acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters ______ 1056.82 linear feet (ft), ______ 29.07 width (ft)
- [] Other waters ______ acres
- [] Wetlands ______ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 255

USDA Nat’l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ________________________________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 256
State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters [] Linear Feet [] Width (ft) and/or [] Acres
 Wetlands Acres: []

 c. Limits (boundaries) of Jurisdiction based on:
 []

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.10957
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☑ Tributary flows directly to TNW □ Tributary flows through ___ tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

- Mean High water Mark indicated by:
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is: Explain:

Characteristics: Explain:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if known.

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer: Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species: Explain:
 - Fish/Spawn Areas: Explain:
 - Other environmentally-sensitive species: Explain:
 - Aquatic/Wildlife Diversity: Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: The above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
 - Linear Feet:
 - Width (ft):
 - TNW Acres

- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - Linear Feet:
 - Width (Ft):
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Expression of Wetlands, Tributaries, and Waters:

- [] Provide a definition and location for each.

- [] Use appropriate terms such as: Wetlands, Wetland, Wetlands, Tributaries, and Waters.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR: acres:
- Wetlands MBR: acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters: 2290.32 linear feet, 7.49 width (ft)
- Other waters
- Wetlands

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey</td>
<td>Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
<td></td>
</tr>
</tbody>
</table>
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters: Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________

 Summarize rationale supporting determination:

 [] Vegetation

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01471
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 [] Tributary flows directly to TNW
 [] Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Explain:

Tributary properties with respect to top of bank (estimate):

Average Width (ft):

Average Depth (ft):

Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Characteristics:

Subsurface Flow: No

Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

- [] Discontinuous? Explain:
(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

Riparian Corridor Characteristics:

Wetland Fringe Characteristics:

Habitat for:

Federally Listed Species

Explain findings:

Fish/Spawn Areas

Explain findings:

Other environmentally-sensitive species

Explain findings:

Aquatic/Wildlife diversity

Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac):

Wetland Type, Explain:

Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is:

Explain:

Surface Flow is:

Characteristics:

Subsurface Flow:

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

Wetland Directly Abutting Non-TNW

Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection

Ecological connection

Separated by berm/barrier

Explain:

Explain:

Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain: (Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
- [] Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: __________ Width (Ft): __________
 - [] Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 892.11 linear feet, 4.35 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
□ Office Concurs with data sheets/delineation report
□ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
□ USGS NHD Data
□ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 257</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat'l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerial Photographs</th>
<th>(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Photographs</td>
<td>(Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law</td>
<td>Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation:</td>
</tr>
</tbody>
</table>

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 258
State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site:
Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ______________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00346
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✅ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Pebbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks

☐ OHWM (check all the apply): OHWM Indicators:
- Clear, natural line impressed on the bank
- Changes in soil character
- Shelving
- Vegetation matted down, bent or absent
- Leaf litter disturbed or washed away
- Sediment deposition
- Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: □
- oil or scum line along shore objects □
- fine shell or debris deposits (foreshore) □
- physical markings/characteristics □
- tidal gauges □
- other □

- Mean High water Mark indicated by: □
- survey to available datum □
- physical markings □
- vegetation lines/changes in vegetation types □

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
 Properties:
 - Wetland Size (ac):
 - Wetland Type, Explain:
 - Wetland Quality, Explain:

 Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
 - Wetland Flow is: Explain:
 - Surface Flow is:
 - Characteristics:
 - Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
 - Wetland Directly Abutting Non-TNW
 - Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
 - Project Wetlands: River Miles from TNW:
 - Project Wetlands: Aerial Miles from TNW:
 - Flow is From:
 - Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______
- Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ______ Width (Ft): ______
 - Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): ______ Width (Feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 258

U.S Army Corps of Engineers

- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 676.44 linear feet (ft), 3.92 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 258

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 259

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):

15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination.
Date:

☑ Field Determination.
Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)

 ☐ Wetlands adjacent to TNWs

 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

 ☐ Non-RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

 ☐ Impoundments of jurisdictional waters

 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ✓ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 Summarize rationale supporting determination:
 ☐ Vegetation

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01633
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 259

U.S. Army Corps of Engineers

Project waters are _______ river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are _______ aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft): _______
- Average Depth (ft): _______
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain: _______

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for: Ephemeral Flow</th>
</tr>
</thead>
</table>

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics: _______

Subsurface Flow: No Explain: _______

Dye (or other) test performed: _______

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list): _______

Discontinuous? Explain: _______
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

☑️ High tide line indicated by: __ ☐️ Mean High water Mark indicated by: __
☐️ oil or scum line along shore objects
☐️ fine shell or debris deposits (foreshore)
☐️ physical markings/characteristics
☐️ tidal gauges
☐️ other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known:

__

(iv) Biological Characteristics. Channel supports (check all that apply):

☐️ Riparian Corridor Characteristics: __

☐️ Wetland Fringe Characteristics: __

Habitat for:

☐️ Federally Listed Species Explain findings: __

☐️ Fish/Spawn Areas Explain findings: __

☐️ Other environmentally -sensitive species Explain findings: __

☐️ Aquatic/Wildlife diversity Explain: __

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): __________

Wetland Type, Explain: __

Wetland Quality, Explain: __

Project Wetlands Cross or Serve as State Boundaries, Explain: __

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________ Explain: __

Surface Flow is: __

Characteristics: __

Subsurface Flow: __________ Explain Findings: __

(c) Wetland Adjacency Determination with Non-TNW:

☐️ Wetland Directly Abutting Non-TNW

☐️ Wetland Not Directly Abutting Non-TNW

☐️ Discrete wetland hydrologic connection Explain: __

☐️ Ecological connection Explain: __

☐️ Separated by berm/barrier Explain: __

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________

Project Wetlands: Aerial Miles from TNW: __________

Flow is From: __

Estimate approximate Location of Wetland within Floodplain: __
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely deterministic of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Feature ID: 259</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres: TNW Acres</td>
</tr>
<tr>
<td>Width: TNW Acres</td>
</tr>
<tr>
<td>Length (ft): TNW Acres</td>
</tr>
<tr>
<td>Width (ft): TNW Acres</td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters Linear Feet: Width (Ft): []
- Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

| Length (Linear Feet): Width (feet): Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []

Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 259</th>
</tr>
</thead>
</table>

| USDA Nat'l Res Conservation Service Soil Survey | Citation: |
| National Wetlands Inventory Maps | Cite Map Name: |
| State/Local Wetland Inventory Maps |
| FEMA/FIRM Maps: |
100-year Floodplain Elevation is:	(National Geodetic Vertical Datum of 1929)
Aerial Photographs (Name and Date):	Aerials Express Phoenix 2009, BING Aerial Imagery 2011
Other Photographs (Name and Date):	Ground Photos; June through July 2012, September through October 2012
Previous Determinations	File No. and Date of Response Letter:
Applicable/Supporting Case Law Citation:	
Applicable/Supporting Scientific Literature Citation:	

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 26

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres
Wetlands Acres:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatice resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: ____________________________
 - Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) **General Area Conditions**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.02585
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 (ii) **Physical Characteristics**
 (a) **Relationship with TNW**
 - Tributary flows directly to TNW []
 - Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 □ TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________

 □ Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 □ Tributary waters Linear Feet: __________ Width (ft): __________

 □ Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters ______

Explain finding of no Significant Nexus: See Section IIIC.2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 1100.40 linear feet (ft), 5.50 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 26

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is:
(Definite National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 260

- State: AZ
- County/Parish/borough: Pinal County
- City: N/A

- Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

- Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

- Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam

- Name of watershed or Hydrologic Unit Code (HUC): 15050100

- Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

- Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

- There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- Waters subject to the ebb and flow of the tide.

- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

- There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

 1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 - Non-Wetlands waters: Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):

 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 - Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.04921
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - (ii) Physical Characteristics:
 - □ Tributary flows directly to TNW
 - □ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary tributary substrate composition (check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silts</td>
</tr>
<tr>
<td>Cobble</td>
</tr>
<tr>
<td>Bedrock</td>
</tr>
</tbody>
</table>

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

<table>
<thead>
<tr>
<th>Presence of Run/Ripple/Pool Complexes. Explain: Not present.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary Geometry: Relatively Straight</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary Gradient (approximate average slope): 1%</th>
</tr>
</thead>
</table>

Flow

<table>
<thead>
<tr>
<th>Tributary Provides for: Ephemeral Flow</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Estimate average number of flow events in review area/year: 2-5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Describe Flow Regime: Ephemeral.</th>
</tr>
</thead>
</table>

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

<table>
<thead>
<tr>
<th>Tributary Has (Check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed and Banks</td>
</tr>
<tr>
<td>☑ OHWM (check all the apply): OHWM Indicators:</td>
</tr>
<tr>
<td>Clear, natural line impressed on the bank</td>
</tr>
<tr>
<td>Changes in soil character</td>
</tr>
<tr>
<td>Shelving</td>
</tr>
<tr>
<td>Vegetation matted down, bent or absent</td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
</tr>
<tr>
<td>Sediment deposition</td>
</tr>
<tr>
<td>Water staining</td>
</tr>
<tr>
<td>Presence of litter and debris</td>
</tr>
<tr>
<td>Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>Presence of wrack line</td>
</tr>
<tr>
<td>Sediment sorting</td>
</tr>
<tr>
<td>Scour</td>
</tr>
<tr>
<td>Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>Abrupt change in plant community</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other (list):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Discontinuous? Explain:</th>
</tr>
</thead>
</table>

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: __

(iv) Biological Characteristics. Channel supports (check all that apply):

☐ Riparian Corridor Characteristics: __

☐ Wetland Fringe Characteristics: ___

Habitat for:

☐ Federally Listed Species Explain findings: __

☐ Fish/Spawn Areas Explain findings: __

☐ Other environmentally-sensitive species Explain findings: __

☐ Aquatic/Wildlife diversity Explain: __

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

☐ Wetland Size (ac): __

☐ Wetland Type, Explain: ___

☐ Wetland Quality, Explain: __

Project Wetlands Cross or Serve as State Boundaries, Explain: __

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __

Explain: ___

Surface Flow is: __

Characteristics: __

Subsurface Flow: ___

Explain Findings: __

(c) Wetland Adjacency Determination with Non-TNW:

☐ Wetland Directly Abutting Non-TNW

☐ Wetland Not Directly Abutting Non-TNW

☐ Discrete wetland hydrologic connection Explain: __

☐ Ecological connection Explain: __

☐ Separated by berm/barrier Explain: __

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __

Project Wetlands: Aerial Miles from TNW: __

Flow is From: ___

Estimate approximate Location of Wetland within Floodplain: __
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
</tr>
<tr>
<td>Width (ft):</td>
<td></td>
</tr>
<tr>
<td>TNW Acres</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td></td>
</tr>
<tr>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

2. **RPWs that flow directly or indirectly into TNWs**

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
<td></td>
</tr>
<tr>
<td>Tributary waters</td>
<td>Linear Feet:</td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>Acres:</td>
</tr>
</tbody>
</table>

3. **Non-RPWs that flow directly or indirectly into TNWs.**

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):</td>
<td></td>
</tr>
<tr>
<td>Length (Linear Feet):</td>
<td>Width (feet):</td>
</tr>
</tbody>
</table>

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td>Acres:</td>
</tr>
</tbody>
</table>

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td>Acres:</td>
</tr>
</tbody>
</table>

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON‐JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non‐Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non‐jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non‐wetland‐Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non‐wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non‐jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non‐wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 260</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED JURISDICTIONAL DETERMINATION FORM</td>
<td>U.S Army Corps of Engineers</td>
</tr>
</tbody>
</table>

- **USDA Nat'l Res Conservation Service Soil Survey**
 - Citation: []

- **National Wetlands Inventory Maps**
 - Cite Map Name: []

- **State/Local Wetland Inventory Maps**
 - []

- **FEMA/FIRM Maps**
 - []

- **100-year Floodplain Elevation is:** [] (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs**
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs**
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 - File No. and Date of Response Letter: []

- **Applicable/Supporting Case Law**
 - Citation: []

- **Applicable/Supporting Scientific Literature**
 - Citation: []

 Other Information, Please Specify: []

- **Additional Comments to Support JD:**
 - []
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 261
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W
Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdicitional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ___________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04136
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

- **Dye (or other) test performed:**

Tributary Has (Check all that apply):
- Bed and Banks
- **OHWM (check all the apply):** OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
- **Other (list):**

- **Discontinuous?** Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain:

Ecological connection Explain:

Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characteize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
 Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

 All wetland(s) being considered in cumulative analysis:
 Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNW Linear Feet: ___________ Width (ft): ___________ TNW Acres ___________
- Wetlands adjacent to TNWs: Acres: ___________

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ___________

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ___________

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters Linear Feet: ___________ Width (ft): ___________
 - Other non-wetland waters: Acres: ___________

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): ___________ Width (feet): ___________ Acres: ___________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ___________

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ___________

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
☐ Other Non-wetland Waters MBR acres: []
☐ Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 1285.08 linear feet (ft), 5.48 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 261

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ______________________ (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 262
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00230
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through _______ tributaries before entering TNW
 Project waters are _______ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ______________________
- Mean High water Mark indicated by: ______________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known:

Explain: __

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ______________________
- Wetland Fringe Characteristics: ______________________

Habitat for:

- Federally Listed Species Explain findings: ______________________
- Fish/Spawn Areas Explain findings: ______________________
- Other environmentally -sensitive species Explain findings: ______________________
- Aquatic/Wildlife diversity Explain: ______________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ______________________
- Wetland Type, Explain: ______________________
- Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ______________________ Explain: ______________________
- Surface Flow is: ______________________

Characteristics: ______________________

Subsurface Flow: ______________________ Explain Findings: ______________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: ______________________

Ecological connection Explain: ______________________

Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ______________________

Project Wetlands: Aerial Miles from TNW: ______________________

Flow is From: ______________________

Estimate approximate Location of Wetland within Floodplain: ______________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdicitional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdicitional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdicitional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdicitional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdicitional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdicitional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdicitional wetland in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdicitional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdicitional wetland in the review area:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
☐ Other Non-wetland Waters MBR acres: []
☐ Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 534.31 linear feet (ft), 4.73 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 262</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 263

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatice resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01392
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Poll Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:
Habitat for:
- Federally Listed Species
- Fish/Spawn Areas
- Other environmentally-sensitive species
- Aquatic/Wildlife diversity

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:
Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is:
- Surface Flow:
 - Characteristics:
- Subsurface Flow:
 - Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection
 - Ecological connection
 - Separated by berm/barrier

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:

Habitat for:
- □ Federally Listed Species Explain:
- □ Fish/Spawn Areas Explain:
- □ Other environmentally-sensitive species Explain:
- □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
 - [] Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: [] Width (ft): []
 - [] Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________
- Other Non-wetland Waters MBR acres: __________
- Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 917.32 linear feet (ft), 4.92 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 263</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
</tr>
</tbody>
</table>
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 264
State: AZ County/Parish/borough: Pinal City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☒ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.12585
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:
Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
Other (list):
Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __________________________
Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________
Habitat for:
- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally -sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________
Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: __________________________
Surface Flow is: __________________________
Characteristics: __________________________
Subsurface Flow: __________________________
Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: __________________________
- Ecological connection Explain: __________________________
- Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW: __________________________
Project Wetlands: Aerial Miles from TNW: __________________________
Flow is From: __________________________
Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:

Habitat for:

- □ Federally Listed Species Explain:
- □ Fish/Spawn Areas Explain:
- □ Other environmentally-sensitive species Explain:
- □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: Width (ft): TNW Acres
- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - [] Tributary waters Linear Feet: Width (Ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C. Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 264</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat’l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
</tbody>
</table>

- Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable/Supporting Case Law</td>
<td>Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation:</td>
</tr>
</tbody>
</table>

Other Information, Please Specify: |

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 265
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00590
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

<table>
<thead>
<tr>
<th>Presence of Run/Riffle/Pool Complexes. Explain:</th>
<th>Not present.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary Geometry:</th>
<th>Relatively Straight</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary Gradient (approximate average slope):</th>
<th>1%</th>
</tr>
</thead>
</table>

c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
</table>

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
<th>Discrete and Confined</th>
<th>Characteristics:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Subsurface Flow:</th>
<th>No</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Dye (or other) test performed:

<table>
<thead>
<tr>
<th>Tributary Has (Check all that apply):</th>
</tr>
</thead>
</table>

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

<table>
<thead>
<tr>
<th>Discontinuous?</th>
<th>Explain:</th>
</tr>
</thead>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- [] High tide line indicated by: __________________________
- [] Mean High water Mark indicated by: __________________________
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __________________________
Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):
- [] Riparian Corridor Characteristics: __________________________
- [] Wetland Fringe Characteristics: __________________________
Habitat for:
- [] Federally Listed Species Explain findings: __________________________
- [] Fish/Spawn Areas Explain findings: __________________________
- [] Other environmentally-sensitive species Explain findings: __________________________
- [] Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
 (a) General Wetland Characteristics
Properties:
- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________
Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

 (b) General Flow Relationship with Non-TNW:
Wetland Flow is: __________________________ Explain: __________________________
Surface Flow is: __________________________
Characteristics: __________________________
Subsurface Flow: __________________________ Explain Findings: __________________________

 (c) Wetland Adjacency Determination with Non-TNW:
- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW
 - [] Discrete wetland hydrologic connection Explain: __________________________
 - [] Ecological connection Explain: __________________________
 - [] Separated by berm/barrier Explain: __________________________

 (d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW: __________________________
Project Wetlands: Aerial Miles from TNW: __________________________
Flow is From: __________________________
Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer
 - Characteristics (type, average width):
 - Explain:

- Vegetation
 - type/percent cover. Explain:

 Habitat for:
 - Federally Listed Species
 - Explain:
 - Fish/Spawn Areas
 - Explain:
 - Other environmentally-sensitive species
 - Explain:
 - Aquatic/Wildlife Diversity
 - Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ____________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres: ____________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres: ____________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ____________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ____________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): __________________ Acres: __________________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters __________________

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: __________________ width (ft): __________________
☐ Other Non-wetland Waters MBR acres: __________________
☐ Wetlands MBR acres: __________________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☒ Non-wetland waters 558.84 linear feet (ft), 6.08 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☒ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 265

U.S Army Corps of Engineers

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

✓ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

✓ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 266

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site:
Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters: Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a TNW

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.18038
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are [] river Miles from tributary to RPW:
Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are [] aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
Other (list):

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

- Mean High water Mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): []
Wetland Type, Explain: []
Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: []

Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

Discrete wetland hydrologic connection Explain: []
Ecological connection Explain: []
Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []
Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands.
 Check all that apply and provide size estimates in review area:
 - TNWs
 Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

| E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE |
| Supporting rationale: |
| Length (linear feet): | Acres: |

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft):

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant:
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is:
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:
Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 267

State: Arizona
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: _______________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a TNW:

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): _______________________________ 49650
 Drainage Area (sq mi): _______________________________ 1.35312
 Average Annual Rainfall (in): _______________________________ 10
 Average Annual Snowfall (in): _______________________________ 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through ______ tributaries before entering TNW
 Project waters are ______ river miles from TNW

 (b) Physical Characteristics:
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pour Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
- Clear, natural line impressed on the bank
- Changes in soil character
- Shelving
- Vegetation matted down, bent or absent
- Leaf litter disturbed or washed away
- Sediment deposition
- Water staining

Presence of litter and debris
Destruction of terrestrial vegetation
Presence of wrack line
Sediment sorting
Scour
Multiple observed or predicted flow events
Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
- Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Note: Does any TNW.

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

 Habitat for:
 - [] Federally Listed Species Explain:
 - [] Fish/Spawn Areas Explain:
 - [] Other environmentally-sensitive species Explain:
 - [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
- [] Wetlands adjacent to TNWs: [] Acres: []

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: [] Width (Ft).
 - [] Other non-wetland waters: [] Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: [] Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: [] Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 267

USDA Nat'l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 268

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W</td>
<td>Name of nearest waterbody:</td>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam</td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC): 15050100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters (Linear Feet) Width (ft) and/or Acres
 - Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW:

 □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

<table>
<thead>
<tr>
<th>Watershed Size (sq mi)</th>
<th>49650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.11249</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Cops of Engineers

- Project waters are river Miles from tributary to RPW:
- Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
- Project waters are aerial (straight) miles from tributary to RPW:

Identify flow route to TNW

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

b) General Tributary Characteristics

Tributary is: Natural
Explain:

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

- [] Dye (or other) test performed: []

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list): []
 - Discontinuous? Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
 Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- **TNWs**
 - Linear Feet: __________
 - Width (ft): __________
 - TNW Acres: __________

- **Wetlands adjacent to TNWs**
 - Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- **Tributaries of TNWs where tributaries typically flow year-round are jurisdictional.** Provide data and Rationale indicating that tributary is perennial: __________

- **Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional.** Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Linear Feet: __________
 - Width (Ft): __________
 - Other non-wetland waters
 - Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- **Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional.** Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________
 - Width (feet): __________
 - Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- **Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.**
 - **Wetlands directly abutting an RPW where tributaries typically flow year-round.** Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - **Wetlands directly abutting an RPW where tributaries typically flow "Seasonally".** Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- **Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional.** Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet , width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Conurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 268</th>
</tr>
</thead>
</table>

- **USDA Nat’l Res Conservation Service Soil Survey**
 - Citation:

- **National Wetlands Inventory Maps**
 - Cite Map Name:

- **State/Local Wetland Inventory Maps**

- **FEMA/FIRM Maps**
 - 100-year Floodplain Elevation is: [blank] (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs**
 - Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs**
 - Name and Date: Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 - File No. and Date of Response Letter:

- **Applicable/Supporting Case Law**
 - Citation:

- **Applicable/Supporting Scientific Literature**
 - Citation:

 Other Information, Please Specify:

 Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 269
State: AZ
County/Parish/borough: Pinal County
City: N/A

Section coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ___________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02501
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

| Feature ID: 269 |

Project waters are river Miles from tributary to RPW:
30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Average Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes:</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [x] Gravel
- [] Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

- Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry:

- Relatively Straight

Tributary Gradient (approximate average slope):

- 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year:

- 2-5

Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [x] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [x] Multiple observed or predicted flow events
 - [] Abrupt change in plant community
Other (list):

- [] Discontinuous?
Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ________________________________
- Mean High water Mark indicated by: ________________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ________________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ________________________________
- Wetland Fringe Characteristics: ________________________________

Habitat for:

- Federally Listed Species Explain findings: ________________________________
- Fish/Spawn Areas Explain findings: ________________________________
- Other environmentally -sensitive species Explain findings: ________________________________
- Aquatic/Wildlife diversity Explain: ________________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ________________________________
- Wetland Type, Explain: ________________________________
- Wetland Quality, Explain: ________________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ________________________________ Explain: ________________________________

Surface Flow is: ________________________________

Characteristics: ________________________________

Subsurface Flow: ________________________________ Explain Findings: ________________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ________________________________
 - Ecological connection Explain: ________________________________
 - Separated by berm/barrier Explain: ________________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ________________________________

Project Wetlands: Aerial Miles from TNW: ________________________________

Flow is From: ________________________________

Estimate approximate Location of Wetland within Floodplain: ________________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.)

Explain
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
 Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in cumulative analysis:
 Wetland acres in total being considered in cumulative analysis:
 Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNW Acres</th>
<th>Wetland Acres</th>
</tr>
</thead>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th></th>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
</tr>
<tr>
<td></td>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
</tr>
<tr>
<td></td>
<td>Tributary waters Linear Feet: Width (ft):</td>
</tr>
<tr>
<td></td>
<td>Other non-wetland waters: Acres:</td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

	Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
	Provide estimates of jurisdictional waters within the review area (check all that apply):
	Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

	Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
	Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
	Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
	Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| | Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. |
| | Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

☐ USDA Nat’l Res Conservation Service Soil Survey
Citation:

☐ National Wetlands Inventory Maps
Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ______________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law
Citation:

☐ Applicable/Supporting Scientific Literature
Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 27

- **State:** AZ
- **County/Parish/borough:** Pinal County
- **City:** N/A

Center coordinates of site:
- **Lat.:** 32.8482°N
- **Long.:** -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
- Gila River between Powers Butte and Gillespie Dam

- **Name of watershed or Hydrologic Unit Code (HUC):** 15050100

- **Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request:** Yes

- **Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form:** No

SECTION II: SUMMARY OF FINDINGS

A. **RHA SECTION 10 DETERMINATION OF JURISDICTION**

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- **Waters subject to the ebb and flow of the tide:** No
- **Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce:** No

B. **CWA SECTION 404 DETERMINATION OF JURISDICTION**

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. **Waters of the U.S.**
 a. **Indicate presence of water of U.S. in review area (Check all the apply):**
 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. **Identify (estimate) size of waters of the U.S. in the review area**
 - Non-Wetlands waters: Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:

 c. **Limits (boundaries) of Jurisdiction based on:**

2. **Non-Regulated Waters/Wetlands (check if applicable):**

 - **Check potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:** Yes

 - **Explain:** Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02306
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 □ Tributary flows directly to TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
- Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
Other (list):
- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects: []
- Fine shell or debris deposits (foreshore): []
- Physical markings/characteristics: []
- Tidal gauges: []
- Other: []
- Mean high water mark indicated by: []
- Survey to available datum: []
- Physical markings: []
- Vegetation lines/changes in vegetation types: []

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain: []
- Identify specific pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor characteristics: []
- Wetland fringe characteristics: []

Habitat for:

- Federally listed species: []
- Fish/spawn areas: []
- Other environmentally-sensitive species: []
- Aquatic/wildlife diversity: []

Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland size (ac): []
- Wetland type, explain: []
- Wetland quality, explain: []

Project wetlands cross or serve as state boundaries, explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland flow is: []
- Explain: []
- Surface flow is: []
- Characteristics: []
- Subsurface flow: []
- Explain findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland directly abutting non-TNW: []
- Wetland not directly abutting non-TNW: []
- Discrete wetland hydrologic connection: []
- Ecological connection: []
- Separated by berm/barrier: []

Explain: []

(d) Proximity (Relationship) to TNW:

- Project wetlands: river miles from TNW: []
- Project wetlands: aerial miles from TNW: []
- Flow is from: []
- Estimate approximate location of wetland within floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______
 - Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ______ Width (Ft): ______ Acres: ______
 - Other non-wetland waters: Acres: ______

3. Non-RPWS that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 27

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
- [] Other Non-wetland Waters MBR acres: _______
- [] Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters 298.53 linear feet (ft), 10.02 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 27

USDA Nat’l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ____________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs
Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs
Name and Date: Ground Photos; June through July 2012, September through October 2012

Previous Determinations
File No. and Date of Response Letter:

Applicable/Supporting Case Law
Citation:

Applicable/Supporting Scientific Literature
Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 270

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters ___________________ Linear Feet ___________________ Width (ft) and/or ___________________ Acres

 Wetlands Acres: ___________________

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.05044
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Cobbles
- gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

- Other (list):
- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ___________
- Mean High water Mark indicated by: ___________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc): Explain: ___________

Identify Specific Pollutants, if known: ___________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___________
- Wetland Fringe Characteristics: ___________

Habitat for:

- Federally Listed Species Explain findings: ___________
- Fish/Spawn Areas Explain findings: ___________
- Other environmentally -sensitive species Explain findings: ___________
- Aquatic/Wildlife diversity Explain: ___________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): ___________
- Wetland Type, Explain: ___________
- Wetland Quality, Explain: ___________

Project Wetlands Cross or Serve as State Boundaries, Explain: ___________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ___________

Surface Flow is: ___________

Characteristics: ___________

Subsurface Flow: ___________ Explain Findings: ___________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ___________
 - Ecological connection Explain: ___________
 - Separated by berm/barrier Explain: ___________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ___________

Project Wetlands: Aerial Miles from TNW: ___________

Flow is From: ___________

Estimate approximate Location of Wetland within Floodplain: ___________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres</td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
</tr>
</tbody>
</table>

Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary waters</td>
<td>Width (Ft)</td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>Acres</td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.</td>
<td></td>
</tr>
</tbody>
</table>

Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (Linear Feet):</td>
<td>Width (feet):</td>
</tr>
<tr>
<td>Acres</td>
<td></td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.</td>
<td></td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______

☐ Other Non-wetland Waters MBR acres: ______

☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 911.79 linear feet (ft), 5.26 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Map Type</th>
<th>Citation</th>
<th>Name and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
<td></td>
</tr>
<tr>
<td>Ground Photos; June through July 2012, September through October 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature Citation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIOINAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 271

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
<th>Center coordinates of site:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal</td>
<td>N/A</td>
<td>Lat. 32.8482°N Long. -111.2599°W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of nearest waterbody:</th>
<th>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
</tr>
</tbody>
</table>

- Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S."

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S."

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or</th>
<th>Acres</th>
</tr>
</thead>
</table>

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.20208
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✓ Tributary flows through ____________ tributaries before entering TNW
 Project waters are _______ (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 271

Project waters are _______ river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are _______ aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
 Average Width (ft):
 Average Depth (ft):
 Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation

Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

[] Dye (or other) test performed:

Tributary Has (Check all that apply):

[] Bed and Banks
[] OHWM (check all the apply): OHWM Indicators:
- [] Clear, natural line impressed on the bank
- [] Changes in soil character
- [] Shelving
- [] Vegetation matted down, bent or absent
- [] Leaf litter disturbed or washed away
- [] Sediment deposition
- [] Water staining

Other (list):

[] Discontinuous? Explain:

Other Information on Duration and Volume:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ___________________________
- Mean High water Mark indicated by: ____________________
- Oil or scum line along shore objects: ____________________
- Fine shell or debris deposits (foreshore): ________________
- Physical markings or characteristics: ____________________
- Tidal gauges: __
- Other: ___

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ______________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: _______________________
- Wetland Fringe Characteristics: _________________________

Habitat for:

- Federally Listed Species Explain findings: _______________
- Fish/Spawn Areas Explain findings: ______________________
- Other environmentally-sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: ________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

- Properties:
 - Wetland Size (ac): ______________________
 - Wetland Type, Explain: ______________________
 - Wetland Quality, Explain: ______________________

- Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ______________________
- Surface Flow is: ______________________

- Characteristics: ______________________
- Subsurface Flow: ______________________

- Explain Findings: ______________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ______________________
- Ecological connection Explain: ______________________
- Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ______________________
- Project Wetlands: Aerial Miles from TNW: ______________________

- Flow is From: ______________________

- Estimate approximate Location of Wetland within Floodplain: ______________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (Ft).

☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft):
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 271

USDA Nat’l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 272

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N, Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters ___________ Linear Feet ___________ Width (ft) and/or ___________ Acres

Wetlands Acres: ___________

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: __________________________
 - ☐ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.03530 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through __4__ tributaries before entering TNW
 - Project waters are __30 (or more)__ river miles from TNW
Feature ID: 272

U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:

Project waters are aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):

Average Width (ft):

Average Depth (ft):

Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Cobble
- Bedrock
- Substrate - Vegetation

Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks

- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

 Other (list):

- Discontinuous? Explain:

 Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________

☐ Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: __________ Width (ft): __________ Acres: __________

☐ Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

...
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): ______ linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR ______ acres: ______
☐ Wetlands MBR ______ acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters ______ linear feet (ft), ______ 4.16 width (ft)
☐ Other waters ______ acres
☐ Wetlands ______ acres

SECTON IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 272</th>
</tr>
</thead>
</table>

USDA Nat'l Res Conservation Service Soil Survey	Citation:
National Wetlands Inventory Maps	Cite Map Name:
State/Local Wetland Inventory Maps	
FEMA/FIRM Maps:	
100-year Floodplain Elevation is:	(National Geodetic Vertical Datum of 1929)
Aerial Photographs (Name and Date):	Aerials Express Phoenix 2009, BING Aerial Imagery 2011
Other Photographs (Name and Date):	Ground Photos; June through July 2012, September through October 2012
Previous Determinations File No. and Date of Response Letter:	
Applicable/Supporting Case Law Citation:	
Applicable/Supporting Scientific Literature Citation:	

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 273

<table>
<thead>
<tr>
<th>Name of watershed or Hydrologic Unit Code (HUC):</th>
<th>15050100</th>
</tr>
</thead>
</table>

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☑ Field Determination. Date(s): 10/2012
☐ Office (Desk) Determination. Date:

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "Waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01256
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through _______ tributaries before entering TNW

 Project waters are _______ river miles from TNW

 30 (or more)
(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Cobble
- [] Bedrock
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:
Subsurface Flow: No
Explain:

Other (list):

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics: __________________________

Habitat for:
- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
 Properties:
 - Wetland Size (ac): __________________________
 - Wetland Type, Explain: __________________________
 - Wetland Quality, Explain: __________________________

 Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:
 Wetland Flow is: __________________________
 Explain: __________________________
 Surface Flow is: __________________________
 Characteristics: __________________________
 Subsurface Flow: __________________________
 Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:
 - Wetland Directly Abutting Non-TNW
 - Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________________________
 - Ecological connection Explain: __________________________
 - Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW
 Project Wetlands: River Miles from TNW: __________________________
 Project Wetlands: Aerial Miles from TNW: __________________________
 Flow is From: __________________________
 Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all of its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: ___________ Width (ft): ___________ TNW Acres ___________

☐ Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _____________________________.

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _____________________________.

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: _______ Width (Ft): _______

☐ Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): ___________ Width (feet): ___________ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _____________________________.

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _____________________________.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
- [] Other Non-wetland Waters MBR acres: []
- [] Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [x] Non-wetland waters 1384.01 linear feet (ft), 4.28 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [x] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [x] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [x] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID</th>
<th>273</th>
</tr>
</thead>
</table>

Approved Jurisdictional Determination Form
U.S. Army Corps of Engineers

- **USDA Nat'l Res Conservation Service Soil Survey**
 Citation:

- **National Wetlands Inventory Maps**
 Cite Map Name:

- **State/Local Wetland Inventory Maps**

- **FEMA/FIRM Maps**

- **100-year Floodplain Elevation is:**
 (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs (Name and Date):**
 Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs (Name and Date):**
 Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 File No. and Date of Response Letter:

- **Applicable/Supporting Case Law Citation:**

- **Applicable/Supporting Scientific Literature Citation:**

- **Other Information, Please Specify:**

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 274

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/county Borough</th>
<th>City</th>
<th>Name of nearest waterbody</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal County</td>
<td>N/A</td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Center coordinates of site</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat. 32.8482"N</td>
<td>Long. -111.2599"W</td>
</tr>
</tbody>
</table>

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

| Name of watershed or Hydrologic Unit Code (HUC) | 15050100 |

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands Acres:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.06948</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW

✓ Tributary flows through 4 tributaries before entering TNW

Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

 Other (list):

- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other
- Mean High water Mark indicated by: __________________________
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally -sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: __________________________
Explain: __________________________

Surface Flow is: __________________________
Characteristics: __________________________

Subsurface Flow: __________________________
Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________________________
 - Ecological connection Explain: __________________________
 - Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW: __________________________
Project Wetlands: Aerial Miles from TNW: __________________________
Flow is From: __________________________
Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________________________

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters: __________________________

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR: acres: ______
☐ Wetlands MBR: acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters: 2020.96 linear feet (ft), 5.35 width (ft)
☐ Other waters: acres
☐ Wetlands: acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s): Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 274</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S Army Corps of Engineers</td>
</tr>
</tbody>
</table>

- **USDA Nat'l Res Conservation Service Soil Survey**
 - Citation:
 - Cite Map Name:
- **National Wetlands Inventory Maps**
 - Cite Map Name:
- **State/Local Wetland Inventory Maps**
 - Cite Map Name:
- **FEMA/FIRM Maps**
 - Cite Map Name:
- **100-year Floodplain Elevation is:** (National Geodetic Vertical Datum of 1929)
 - **Aerial Photographs**
 - Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - **Other Photographs**
 - Name and Date: Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations**
 - File No. and Date of Response Letter:
- **Applicable/Supporting Case Law**
 - Citation:
- **Applicable/Supporting Scientific Literature**
 - Citation:
 - Other Information, Please Specify:
- **Additional Comments to Support JD:**

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 275
State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

✓ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
✓ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ✓ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.03333
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are

river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:**

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

Stable.

Presence of Run/Riffle/Pool Complexes. Explain:

Not present.

Tributary Geometry:

- [] Relatively Straight

Tributary Gradient (approximate average slope):

1%

(c) Flow

Tributary Provides for:

- **Ephemeral Flow**

Estimate average number of flow events in review area/year:

2-5

Describe Flow Regime:

Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:

- Discrete and Confined

Subsurface Flow:

- No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous?

Explain:

Other:

Explain:

Describe Flow Regime:

Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:

- Discrete and Confined

Subsurface Flow:

- No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous?

Explain:

Other:

Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ___________
- Mean High water Mark indicated by: ___________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: ___________

Identify Specific Pollutants, if known: ___________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___________
- Wetland Fringe Characteristics: ___________

Habitat for:

- Federally Listed Species Explain findings: ___________
- Fish/Spawn Areas Explain findings: ___________
- Other environmentally -sensitive species Explain findings: ___________
- Aquatic/Wildlife diversity Explain: ___________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ___________
- Wetland Type, Explain: ___________
- Wetland Quality, Explain: ___________

Project Wetlands Cross or Serve as State Boundaries, Explain: ___________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ___________ Explain: ___________

Surface Flow is: ___________

Characteristics: ___________

Subsurface Flow: ___________ Explain Findings: ___________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ___________
 - Ecological connection Explain: ___________
 - Separated by berm/barrier Explain: ___________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ___________
Project Wetlands: Aerial Miles from TNW: ___________
Flow is From: ___________
Estimate approximate Location of Wetland within Floodplain: ___________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:
☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.
Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 ☐ Tributary waters Linear Feet: Width (Ft).
 ☐ Other non-wetland waters: Acres:

3. Non-RPWS that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 ☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 ☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 1963.60 linear feet (ft), 5.27 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
| Feature ID: 275 |

| USDA Nat'l Res Conservation Service Soil Survey | Citation: |
| National Wetlands Inventory Maps | Cite Map Name: |
| State/Local Wetland Inventory Maps |
| FEMA/FIRM Maps: |
| 100-year Floodplain Elevation is: | (National Geodetic Vertical Datum of 1929) |

- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012

| Previous Determinations | File No. and Date of Response Letter: |

| Applicable/Supporting Case Law Citation: |
| Applicable/Supporting Scientific Literature Citation: |
| Other Information, Please Specify: |

Additional Comments to Support JD:
APPRISED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 276

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

Watershed Size (sq mi):	49650
Drainage Area (sq mi):	0.02896
Average Annual Rainfall (in):	10
Average Annual Snowfall (in):	0

(ii) Physical Characteristics:

(a) Relationship with TNW

□ Tributary flows directly to TNW
☑ Tributary flows through 4 tributaries before entering TNW

Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- ☑ Silts
- ☑ Gravel
- ☑ Substrate - Vegetation
- ☐ Sands
- ☐ Concrete
- ☐ Muck
- ☐ Bedrock
- ☐ Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
- ☐ Bed and Banks
- ☑ OHWM (check all the apply): OHWM Indicators:
 - ☑ Clear, natural line impressed on the bank
 - ☑ Changes in soil character
 - ☑ Shelving
 - ☑ Vegetation matted down, bent or absent
 - ☑ Leaf litter disturbed or washed away
 - ☑ Sediment deposition
 - ☑ Water staining
 - ☐ Presence of litter and debris
 - ☐ Destruction of terrestrial vegetation
 - ☐ Presence of wrack line
 - ☐ Sediment sorting
 - ☑ Scour
 - ☐ Multiple observed or predicted flow events
 - ☐ Abrupt change in plant community
- ☐ Other (list):
- ☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other

- Mean High water Mark indicated by:
 - survey to available datum
 - physical markings
 - vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is: Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - [] TNWs
 - [] Wetlands adjacent to TNWs

 Linear Feet:
 Width (ft):
 TNW Acres

2. **RPWs that flow directly or indirectly into TNWs**

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - [] Other non-wetland waters

 Linear Feet:
 Width (Ft):
 Acres:

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 - [] Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 - Provide acreage estimates for jurisdictional wetland in the review area:

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 - Provide acreage estimates for jurisdictional wetland in the review area:

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Feature ID: 276

U.S. Army Corps of Engineers

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 592.25 linear feet, 4.11 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☑ Office Concurs with data sheets/delineation report

☑ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 276

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offtake mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.01168
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 (ii) **Physical Characteristics:**
 (a) Relationship with TNW
 - □ Tributary flows directly to TNW
 - ✔ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- Oil or scum line along shore objects: []
- Fine shell or debris deposits (foreshore): []
- Physical markings/characteristics: []
- Tidal gauges: []
- Other: []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []
Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor: Characteristics: []
- Wetland Fringe: Characteristics: []

Habitat for:

- Federally Listed Species: Explain findings: []
- Fish/Spawn Areas: Explain findings: []
- Other environmentally sensitive species: Explain findings: []
- Aquatic/Wildlife diversity: Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain: []
- Surface Flow is: []

Characteristics: []

Subsurface Flow: Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW: []
- Wetland Not Directly Abutting Non-TNW: []

- Discrete wetland hydrologic connection: Explain: []
- Ecological connection: Explain: []
- Separated by berm/barrier: Explain: []

(d) Proximity (Relationship) to TNW:

- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: _______ Width (ft): _______ TNW Acres: _______
 - Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: _______ Width (Ft): _______
 - Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
277

Feature ID:

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 401.83 linear feet (ft), 3.97 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 277</th>
</tr>
</thead>
</table>

USDA Nat'l Res Conservation Service Soil Survey	Citation:
National Wetlands Inventory Maps	Cite Map Name:
State/Local Wetland Inventory Maps	
FEMA/FIRM Maps:	

- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
- Previous Determinations File No. and Date of Response Letter: |
- Applicable/Supporting Case Law Citation: |
- Applicable/Supporting Scientific Literature Citation: |

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 278
State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02058
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
Other (list):
Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other
- Mean High water Mark indicated by:
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:
Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW
(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:
- Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
 - Characteristics:
 - Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.)

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______
 - Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ______ Width (ft): ______
 - Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR: acres:
- Wetlands MBR: acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters: 1323.64 linear feet, 4.27 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 278</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat’l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>National Wetlands Inventory Maps</th>
<th>Cite Map Name:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>State/Local Wetland Inventory Maps</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FEMA/FIRM Maps:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>100-year Floodplain Elevation is:</th>
<th>(National Geodetic Vertical Datum of 1929)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Aerial Photographs</th>
<th>(Name and Date):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Photographs</th>
<th>(Name and Date):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Photos; June through July 2012, September through October 2012</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law</th>
<th>Citation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Scientific Literature</th>
<th>Citation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other Information, Please Specify:</th>
<th></th>
</tr>
</thead>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 279

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: [___] □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.03573</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClelian Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ______________________
- [] Mean High water Mark indicated by: ______________________
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: ______________________

Identify Specific Pollutants, if known: ______________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ______________________
- [] Wetland Fringe Characteristics: ______________________

Habitat for:
- [] Federally Listed Species Explain findings: ______________________
- [] Fish/Spawn Areas Explain findings: ______________________
- [] Other environmentally -sensitive species Explain findings: ______________________
- [] Aquatic/Wildlife diversity Explain: ______________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- [] Wetland Size (ac): ______________________
- [] Wetland Type, Explain: ______________________
- [] Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________

(b) General Flow Relationship with Non-TNW:
- [] Wetland Flow is: ______________________ Explain: ______________________
- [] Surface Flow is: ______________________
 - [] Characteristics: ______________________
- [] Subsurface Flow: ______________________ Explain Findings: ______________________

(c) Wetland Adjacency Determination with Non-TNW:
- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW
 - [] Discrete wetland hydrologic connection Explain: ______________________
 - [] Ecological connection Explain: ______________________
 - [] Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW
- [] Project Wetlands: River Miles from TNW: ______________________
- [] Project Wetlands: Aerial Miles from TNW: ______________________
- [] Flow is From: ______________________
- [] Estimate approximate Location of Wetland within Floodplain: ______________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres
☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review are (check all that apply):

☐ Tributary waters Linear Feet: Width (Ft).
☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 1048.32 linear feet (ft), 4.37 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 279

☐ USDA Nat’l Res Conservation Service Soil Survey

☐ National Wetlands Inventory Maps

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 28
State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- [] Office (Desk) Determination. Date:
- [x] Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- [x] Waters subject to the ebb and flow of the tide.
- [x] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands Acres:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

- [x] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: []
 - Vegetation []

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00771
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 - Tributary flows directly to TNW []
 - Tributary flows through [4] tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Feature ID: 28

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
 - [] Discontinuous? Explain:

- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ________________________________
- Mean High water Mark indicated by: ____________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ______________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ______________________________
- Wetland Fringe Characteristics: ________________________________

Habitat for:

- Federally Listed Species Explain findings: ______________________
- Fish/Spawn Areas Explain findings: ______________________________
- Other environmentally sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: ______________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________________
- Wetland Type, Explain: __________________
- Wetland Quality, Explain: __________________
- Project Wetlands Cross or Serve as State Boundaries, Explain: __________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________ Explain: ______________________
- Surface Flow is: __________________
- Characteristics: ______________
- Subsurface Flow: __________________ Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: __________________
- Ecological connection Explain: __________________
- Separated by berm/barrier Explain: __________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: _________________________
- Project Wetlands: Aerial Miles from TNW: _______________________
- Flow is From: __________________________
- Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT Nexus DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs
 - [] Wetlands adjacent to TNWs

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - [] Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - [] Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - [] Length (Linear Feet): Width (ft): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): _______ linear feet: _______ width (ft): _______
- Other Non-wetland Waters MBR _______ acres: _______
- Wetlands MBR _______ acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters
 - Linear feet: _______ width (ft): _______
- Other waters _______ acres
- Wetlands _______ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report

- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 28

- USDA Nat'l Res Conservation Service Soil Survey
- National Wetlands Inventory Maps
- FEMA/FIRM Maps:
- 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
- Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
- Previous Determinations File No. and Date of Response Letter:
- Applicable/Supporting Case Law Citation:
- Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 280

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00760
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 [] Tributary flows directly to TNW
 [] Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are
- river Miles from tributary to RPW: [Blank]
- Project waters are 30 (or more) aerial (straight) miles from tributary to TNW: [Blank]
- Project waters are [Blank] aerial (straight) miles from tributary to RPW: [Blank]
- Project waters cross or serve as state boundaries. Explain: [Blank]
- Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

- Tributary is: Natural [Blank]
- Tributary properties with respect to top of bank (estimate):
 - Average Width (ft): [Blank]
 - Average Depth (ft): [Blank]
 - Average Side Slopes: 3:1
- Primary tributary substrate composition (check all that apply):
 - [] Silts
 - [] Sands
 - [] Concrete
 - [] Muck
 - [] Cobble
 - [] Gravel
 - [] Substrate - Vegetation
 - Other, Explain: [Blank]
- Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
- Presence of Run/Riffle/Pool Complexes. Explain: Not present.
- Tributary Geometry: Relatively Straight [Blank]
- Tributary Gradient (approximate average slope): 1%

(c) Flow:

- Tributary Provides for: Ephemeral Flow [Blank]
- Estimate average number of flow events in review area/year: 2-5
- Describe Flow Regime: Ephemeral.
- Other Information on Duration and Volume: [Blank]
- Surface Flow is: Discrete and Confined [Blank]
- Subsurface Flow: No [Blank]
- Dye (or other) test performed: [Blank]

- Tributary Has (Check all that apply):
 - [] Bed and Banks
 - [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list): [Blank]
 - [] Discontinuous? Explain: [Blank]
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ____________________________
- [] Mean High water Mark indicated by: _______________________
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ______________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: __________________________
- [] Wetland Fringe Characteristics: ____________________________

Habitat for:

- [] Federally Listed Species Explain findings: ____________________
- [] Fish/Spawn Areas Explain findings: __________________________
- [] Other environmentally - sensitive species Explain findings: __________
- [] Aquatic/Wildlife diversity Explain: ___________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: ______________________
- Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________
Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________

Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

 - [] Discrete wetland hydrologic connection Explain: ______________
 - [] Ecological connection Explain: ______________________
 - [] Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________
Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: ______________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:
☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 □ TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________

 □ Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________________________

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________________________

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 □ Tributary waters Linear Feet: __________ Width (ft): __________ Acres: __________

 □ Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________________________

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________________________

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 280

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 668.93 linear feet (ft), 3.87 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>280</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat’l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100-year Floodplain Elevation is:</th>
<th>(National Geodetic Vertical Datum of 1929)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Aerial Photographs</th>
<th>(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Photographs</td>
<td>(Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law</th>
<th>Citation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Scientific Literature</th>
<th>Citation:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other Information, Please Specify:</th>
</tr>
</thead>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 281

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWS that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWS that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWS that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWS that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: __________________________
 - ☐ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting TNWs, or if the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**
 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00358
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobbles
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
281

Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

□ Riparian Corridor Characteristics:
□ Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

□ Wetland Directly Abutting Non-TNW
□ Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
281

Feature ID: 281

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC.2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 281</th>
</tr>
</thead>
</table>

ASDTVR DURSIIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

<table>
<thead>
<tr>
<th>Item</th>
<th>Status</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td></td>
<td>Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td></td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td></td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>(Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs</td>
<td>(Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
- July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
- Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
- **Drainage Feature 282**
 - **State:** AZ
 - **County/Parish/borough:** Pinal County
 - **City:** N/A
 - **Center coordinates of site:** Lat. 32.8482°N, Long. -111.2599°W
 - **Name of nearest waterbody:**
 - Gila River between Powers Butte and Gillespie Dam
 - **Name of watershed or Hydrologic Unit Code (HUC):** 15050100

- Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

- There are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. **Waters of the U.S.**
 - **a. Indicate presence of water of U.S. in review area (Check all the apply):**
 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 - **b. Identify (estimate) size of waters of the U.S. in review area**
 - Non-Wetlands Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:
 - **c. Limits (boundaries) of Jurisdiction based on:**

2. **Non-Regulated Waters/Wetlands (check if applicable):**
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 - **Explain:** Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTIOIN III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, it is necessary to determine whether the tributary is a tributary to the TNW.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.12144
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
The text contains a form with various sections and fields that need to be filled in. Here is a structured representation of the content:

General Tributary Characteristics

- **Tributary is:** Natural

- **Average Width (ft):**

- **Average Depth (ft):**

- **Average Side Slopes:** 3:1

- **Primary tributary substrate composition:**
 - Silts
 - Gravel
 - Substrate - Vegetation
 - Other, Explain:

- **Tributary Condition/Stability:** Stable

- **Presence of Run/Riffle/Pool Complexes:** Not present

- **Tributary Geometry:** Relatively Straight

- **Tributary Gradient (approximate average slope):** 1%

Flow

- **Tributary Provides for:** Ephemeral Flow

- **Describe Flow Regime:** Ephemeral

- **Estimate average number of flow events in review area/year:** 2-5

- **Surface Flow is:** Discrete and Confined

- **Subsurface Flow:** No

- **Dye (or other) test performed:**

Additional Information

- **Project waters are** river Miles from tributary to RPW:

- **Project waters are** 30 (or more) aerial (straight) miles from tributary to TNW:

- **Project waters are** aerial (straight) miles from tributary to RPW:

- **Project waters cross or serve as state boundaries:** Explain:

- **Identify flow route to TNW:** Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

Other Information

- **Bed and Banks**
- **OHWM (check all that apply):**
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Other (list):

- **Discontinuous?** Explain:

Feature ID: 282
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Oil or scum line along shore objects: ____________________
- Fine shell or debris deposits (foreshore): _______________
- Physical markings/characteristics: ______________________
- Tidal gauges: __
- Other: ___
- Mean high water mark indicated by: ______________________
- Survey to available datum: ______________________________
- Physical markings: __________________________________
- Vegetation lines/changes in vegetation types: ______________

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___

Identify Specific Pollutants, if known: _______________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ______________________
- Wetland Fringe Characteristics: _________________________

Habitat for:

- Federally Listed Species Explain findings: __________________
- Fish/Spawn Areas Explain findings: ________________________
- Other environmentally-sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: _________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ______________________
- Wetland Type, Explain: ______________________
- Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ______________________ Explain: __________

Surface Flow is: ______________________

Characteristics: ______________________

Subsurface Flow: ______________________ Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ______________________
- Ecological connection Explain: ______________________
- Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ______________________

Project Wetlands: Aerial Miles from TNW: ______________________

Flow is From: ______________________

Estimate approximate Location of Wetland within Floodplain: ______________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.
Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:
This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet</th>
<th>Width (Ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributary waters</td>
<td>Linear Feet</td>
<td>Width (Ft)</td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet</th>
<th>Width (Ft)</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates of jurisdictional waters within the review area (check all that apply):</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Item</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td></td>
</tr>
</tbody>
</table>

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Item</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.</td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td></td>
</tr>
</tbody>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 1624.40 linear feet (ft), 4.20 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 282

☐ USDA Nat'l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR Approved Jurisdictional Determination (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 283

State: AZ

County/Parish/borough: Pinal County

City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.05386
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Other Information on Duration and Volume:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []
- Mean High water Mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: [] Explain:

Surface Flow is: []

Characteristics:

Subsurface Flow: []

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs: Linear Feet: ______ Width (ft): ______ TNW Acres: ______
 - Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: ______ Width (ft): ______
 - Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Wetlands directly abutting an RPW where tributaries typically flow "seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft):
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 283

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ________________________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 284

 State: AZ
 County/Parish/borough: Pinal County
 City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

 There ☑ No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

 There ☑ No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

 1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPws that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPws that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters _______________ Linear Feet _______________ Width (ft) and/or _______________ Acres

 Wetlands Acres: _______________

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1.; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ___________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.00064</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW
☐ Tributary flows through _______ tributaries before entering TNW

Project waters are _______ (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Cobble
- Bedrock
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

 Other (list):

- Discontinuous? Explain:

Other Information on Duration and Volume:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________
- Mean High Water Mark indicated by: __________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________

Identify Specific Pollutants, if known: __________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________
- Wetland Fringe Characteristics: __________

Habitat for:

- Federally Listed Species Explain findings: __________
- Fish/Spawn Areas Explain findings: __________
- Other environmentally-sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: __________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________
- Wetland Type, Explain: __________
- Wetland Quality, Explain: __________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________

Surface Flow is: __________

Characteristics: __________

Subsurface Flow: __________

Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: __________
- Ecological connection Explain: __________
- Separated by berm/barrier Explain: __________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________

Project Wetlands: Aerial Miles from TNW: __________

Flow is From: __________

Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical, and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: ______ Width (ft): ______ TNW Acres: ______
- Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ______ Width (ft): ______
 - Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ___________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 Drainage Feature 285
 State: AZ
 County/Parish/borough: Pinal
 City: N/A
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 □ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a
different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 □ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in
 the review area.
 □ Waters subject to the ebb and flow of the tide.
 □ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☑ TNWs (new)
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered
 jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a
 significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.02300
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**
 - □ Tributary flows directly to TNW
 - ✓ Tributary flows through __4__ tributaries before entering TNW
 - Project waters are __30 (or more)__ river miles from TNW
Feature ID: 285
U.S. Army Corps of Engineers

1. **Project waters are** __river__ Miles from tributary to RPW:
1. **Project waters are** __30 (or more) __aerial (straight) miles from tributary to TNW:
1. **Project waters are** __aerial (straight) miles from tributary to RPW:
1. **Project waters cross or serve as state boundaries.** Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [x] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Bedrock
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous?
Explain:

Explanation of flow regime:

- **Self-Qualification:** Ephemeral.
- **Duration and Volume:**
 - **Surface Flow:** Discrete and Confined
 - **Subsurface Flow:** No
 - **Dye (or other) test performed:**

Other Information on OHWM Indicators:

- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []
- Mean high water mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify specific pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:
- Federally listed species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, explain:
- Wetland Quality, explain:

Project Wetlands Cross or Serve as State Boundaries, explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is:

Explain:

Surface Flow is:

Characteristics:

Subsurface Flow:

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland directly abutting Non-TNW []
- Wetland not directly abutting Non-TNW []
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW:

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is from:

Estimate approximate location of wetland within floodplain:

(iv) Biological Characteristics. Channel supports (check all that apply):
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
- All wetland(s) being considered in cumulative analysis:
- Wetland acres in total being considered in cumulative analysis:
- Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: Width (ft): TNW Acres
- Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 Provide estimates for jurisdictional waters in the review are (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams) linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), 775.16 width (ft), 4.35
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 285</th>
</tr>
</thead>
</table>

| □ USDA Nat’l Res Conservation Service Soil Survey | Citation: |
| □ National Wetlands Inventory Maps | Cite Map Name: |
| □ State/Local Wetland Inventory Maps |
| □ FEMA/FIRM Maps: |
| □ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929) |
| ✔ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011 |
| ✔ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012 |
| □ Previous Determinations File No. and Date of Response Letter: |
| □ Applicable/Supporting Case Law Citation: |
| □ Applicable/Supporting Scientific Literature Citation: |
| Other Information, Please Specify: |

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 286
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):
15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐/☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐/☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00114
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW
 - [] Tributary flows directly to TNW
 - [] Tributary flows through ____ tributaries before entering TNW
 - Project waters are ____ river miles from TNW
Feature ID: 286

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally-sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: []
- Surface Flow is: []

Characteristics: []

Subsurface Flow: [] Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

Discrete wetland hydrologic connection Explain: []

Ecological connection Explain: []

Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: _______ Width (ft): _______ TNW Acres _______

☐ Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 ☐ Tributary waters Linear Feet: _______ Width (Ft): _______

 ☐ Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 ☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______

 ☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 205.05 linear feet (ft), 4.01 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 286

USDA Nat’l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations
File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 287
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date: ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ______________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00334
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☑ Tributary flows through
 ☐ Tributary flows directly to TNW
 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are 30 (or more) river miles from tributary to RPW:

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary properties with respect to top of bank (estimate):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Width (ft):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
<td></td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [x] Concrete
- [] Muck
- [] Gravel
- [x] Substrate - Vegetation
- [] Other, Explain: |

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed: |

Tributary Has (Check all that apply):

- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [x] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list): |

Discontinuous? Explain: |
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: □
- Mean High water Mark indicated by: □
- oil or scum line along shore objects □
- fine shell or debris deposits (foreshore) □
- physical markings/characteristics □
- tidal gauges □
- other □

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

Habitat for:

- Federally Listed Species □
- Fish/Spawn Areas □
- Other environmentally-sensitive species □
- Aquatic/Wildlife diversity □

(i) Physical Characteristics:

(a) General Wetland Characteristics

- Wetland Size (ac): □
- Wetland Type, Explain: □
- Wetland Quality, Explain: □

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: □
- Surface Flow is: □
- Characteristics: □
- Subsurface Flow: □
- Explain Findings: □

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW □
- Wetland Not Directly Abutting Non-TNW □
- Discrete wetland hydrologic connection □
- Ecological connection □
- Separated by berm/barrier □

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: □
- Project Wetlands: Aerial Miles from TNW: □
- Flow is From: □
- Estimate approximate Location of Wetland within Floodplain: □
C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands.

Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters: Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet):</th>
<th>Width (feet):</th>
<th>Acres:</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
□ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): __________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________

Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters __________

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

□ Non wetland-Waters (i.e., rivers, streams): __________ linear feet : __________ width (ft): __________

□ Other Non-wetland Waters MBR __________ acres: __________

□ Wetlands MBR __________ acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters __________ linear feet (ft), __________ width (ft)

□ Other waters __________ acres

□ Wetlands __________ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 287

USDA Nat’l Res Conservation Service Soil Survey
National Wetlands Inventory Maps
State/Local Wetland Inventory Maps
FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 288
 State: AZ
 County/Parish/borough: Pinal County
 City: N/A
 Center coordinates of site: Lat. 32.8482°N
 Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW: []

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.46436
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 [] Tributary flows directly to TNW
 [] Tributary flows through [] tributaries before entering TNW

 Project waters are [] river miles from TNW

 [] Tributary flows through

 [] tributaries before entering TNW

 Project waters are [] river miles from TNW

 [] Tributary flows directly to TNW

 [] Tributary flows through

 [] tributaries before entering TNW

 Project waters are [] river miles from TNW
Feature ID: 288

Project waters are

<table>
<thead>
<tr>
<th>Feature ID</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>30 (or more)</th>
<th>aerial (straight) miles from tributary to TNW:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>aerial (straight) miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project waters cross or serve as state boundaries.</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary tributary substrate composition (check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Silts</td>
</tr>
<tr>
<td>- Sands</td>
</tr>
<tr>
<td>- Concrete</td>
</tr>
<tr>
<td>- Muck</td>
</tr>
<tr>
<td>- Cobble</td>
</tr>
<tr>
<td>- Gravel</td>
</tr>
<tr>
<td>- Substrate - Vegetation</td>
</tr>
<tr>
<td>- Other, Explain:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:</th>
<th>Stable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain:</td>
<td>Not present.</td>
</tr>
<tr>
<td>Tributary Geometry:</td>
<td>Relatively Straight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Gradient (approximate average slope):</th>
<th>1%</th>
</tr>
</thead>
</table>

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe Flow Regime:</td>
<td>Ephemeral.</td>
</tr>
</tbody>
</table>

Other Information on Duration and Volume:

| Surface Flow is: | Discrete and Confined | Characteristics: |
| | | |

<table>
<thead>
<tr>
<th>Subsurface Flow:</th>
<th>No</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dye (or other) test performed:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tributary Has (Check all that apply):

<table>
<thead>
<tr>
<th>Bed and Banks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OHWM (check all the apply): OHWM Indicators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear, natural line impressed on the bank</td>
</tr>
<tr>
<td>Changes in soil character</td>
</tr>
<tr>
<td>Shelving</td>
</tr>
<tr>
<td>Vegetation matted down, bent or absent</td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
</tr>
<tr>
<td>Sediment deposition</td>
</tr>
<tr>
<td>Water staining</td>
</tr>
<tr>
<td>Presence of litter and debris</td>
</tr>
<tr>
<td>Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>Presence of wrack line</td>
</tr>
<tr>
<td>Sediment sorting</td>
</tr>
<tr>
<td>Scour</td>
</tr>
<tr>
<td>Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>Abrupt change in plant community</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discontinuous?</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
288

Feature ID: 288

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ______
- Mean High water Mark indicated by: ______
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ______

Identify Specific Pollutants, if known: ______

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor Characteristics: ______
- Wetland Fringe Characteristics: ______

Habitat for:

- Federally listed species Explain findings: ______
- Fish/spawn areas Explain findings: ______
- Other environmentally sensitive species Explain findings: ______
- Aquatic/wildlife diversity Explain: ______

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland size (ac): ______
- Wetland type, Explain: ______
- Wetland quality, Explain: ______

Project wetlands cross or serve as state boundaries, Explain: ______

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ______ Explain: ______

Surface Flow is: ______

Characteristics: ______

Subsurface Flow: ______ Explain Findings: ______

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland directly abutting non-TNW
- Wetland not directly abutting non-TNW
 - Discrete wetland hydrologic connection Explain: ______
 - Ecological connection Explain: ______
 - Separated by berm/barrier Explain: ______

(d) Proximity (Relationship) to TNW

Project wetlands: River miles from TNW: ______

Project wetlands: Aerial miles from TNW: ______

Flow is from: ______

Estimate approximate location of wetland within floodplain: ______
(ii) Chemical Characteristics:

Charaterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):

- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:

- Fish/Spawn Areas Explain:

- Other environmentally-sensitive species Explain:

- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Item</th>
<th>Check</th>
<th>Size Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td>Linear Feet:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Width (ft):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TNW Acres:</td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td></td>
<td>Acres:</td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters
 - Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): | Width (Feet): | Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
□ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _____ Acres: _____

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

□ Non wetland-Waters (i.e., rivers, streams): linear feet: _____ width (ft): _____
□ Other Non-wetland Waters MBR acres: _____
□ Wetlands MBR acres: _____

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 1590.44 linear feet (ft), 8.38 width (ft)
□ Other waters acres
□ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
□ Office Concurs with data sheets/delineation report
□ Office Does Not Concur with data sheets/delineation report
□ Data Sheets Prepared by the Corps
□ Corps Navigable Water Study
□ US Geological Survey Hydrologic Atlas
□ USGS NHD Data
□ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 288

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):
15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW:
 ☐ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.34529 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) **Physical Characteristics:**

<table>
<thead>
<tr>
<th>Relationship with TNW</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Tributary flows directly to TNW</td>
</tr>
<tr>
<td>☑ Tributary flows through 4 tributaries before entering TNW</td>
</tr>
</tbody>
</table>

 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Estimate average number of flow events in review area/year: 2-5

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

□ Dye (or other) test performed:

Tributary Has (Check all that apply):

□ Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
- □ Clear, natural line impressed on the bank
- □ Changes in soil character
- □ Shelving
- □ Vegetation matted down, bent or absent
- □ Leaf litter disturbed or washed away
- □ Sediment deposition
- □ Water staining
- Other (list):

□ Discontinuous? Explain:

□ Presence of litter and debris
□ Destruction of terrestrial vegetation
□ Presence of wrack line
□ Sediment sorting
□ Scour
□ Multiple observed or predicted flow events
□ Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

- Mean high water mark indicated by: ____________________________
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Charakterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species
- Fish/Spawn Areas
- Other environmentally-sensitive species
- Aquatic/Wildlife diversity

Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain:

Surface Flow is: ____________________________

Characteristics:

Subsurface Flow: ____________________________ Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection
- Ecological connection
- Separated by berm/barrier

Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):

- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:

- Fish/Spawn Areas Explain:

- Other environmentally-sensitive species Explain:

- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Description</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Description</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributary waters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Description</th>
<th>Length (Linear Feet)</th>
<th>Width (feet)</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide estimates of jurisdictional waters within the review area (check all that apply):

| Description | | |
|-------------| | |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

| Description | | |
|-------------| | |
| Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: |
| Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: |

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| Description | | |
|-------------| | |
| Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. |

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 2403.62 linear feet (ft), 10.70 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concur with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 289

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
✓ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
✓ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 29
State: AZ City: N/A
County/Parish/borough: Pinal
Center coordinates of site:
Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICATION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICATION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.09228
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 - ☐ Tributary flows directly to TNW
 - ☐ Tributary flows through _______ tributaries before entering TNW
 - ☐ Project waters are _______ (or more) river miles from TNW

 (a) Relationship with TNW
 - ☐ Tributary flows directly to TNW
 - ☐ Tributary flows through _______ tributaries before entering TNW
 - ☐ Project waters are _______ (or more) river miles from TNW

 (b) Physical Characteristics:
 - Watershed Size (sq mi): _______
 - Drainage Area (sq mi): _______
 - Average Annual Rainfall (in): _______
 - Average Annual Snowfall (in): _______

 (c) Vegetation:
 - ☐ Woody vegetation
 - ☐ Aquatic vegetation
 - ☐ terrestrial vegetation
Feature ID: 29

Project waters are
- river Miles from tributary to RPW:
- Project waters are **30 (or more)** aerial (straight) miles from tributary to TNW:
- Project waters are **aerial (straight) miles from tributary to RPW:**
- Project waters cross or serve as state boundaries. **Explain:**

Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: **3:1**

Primary tributary substrate composition (check all that apply):
- **Silts**
- **Cobbles**
- **Bedrock**
- **Sands**
- **Concrete**
- **Gravel**
- **Substrate - Vegetation**
- **Muck**
- Other, **Explain:**

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. **Explain:**]
- Stable.

Presence of Run/Riffle/Pool Complexes. **Explain:
- Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope):
- **1%**

(c) Flow

Tributary Provides for
- Ephemeral Flow

Describe Flow Regime:
- Ephemeral.

Other Information on Duration and Volume:

Surface Flow is
- Discrete and Confined

Subsurface Flow
- No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- **OHWM** (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? **Explain:
(ii) General Wetland Characteristics

Properties:
- **Wetland Size (ac):**
- **Wetland Type, Explain:**
- **Wetland Quality, Explain:**

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- **Wetland Flow is:**
- **Surface Flow is:**
 - **Characteristics:**
 - **Subsurface Flow:**

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- **Wetland Directly Abutting Non-TNW**
- **Wetland Not Directly Abutting Non-TNW**
 - **Discrete wetland hydrologic connection**
 - **Ecological connection**
 - **Separated by berm/barrier**

Explain:

(d) Proximity (Relationship) to TNW

- **Project Wetlands: River Miles from TNW:**
- **Project Wetlands: Aerial Miles from TNW:**
- **Flow is From:**
- **Estimate approximate Location of Wetland within Floodplain:**
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III-D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (Ft).

☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []

☐ Other Non-wetland Waters MBR acres: []

☐ Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 1272.30 linear feet (ft), 10.62 width (ft)

☑ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 29

- USDA Nat’l Res Conservation Service Soil Survey

- National Wetlands Inventory Maps

- FEMA/FIRM Maps:

- 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

- Aerial Photographs

 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- Other Photographs

 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

- Previous Determinations

- File No. and Date of Response Letter:

- Applicable/Supporting Case Law

- Citation:

- Applicable/Supporting Scientific Literature

- Citation:

 Other Information, Please Specify:

- Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 290

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

 ☐

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drains is ephemeral and does not qualify as a TNW or RPW. Therefore, this discharge could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This discharge does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02611
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):

- [x] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

- **Stable.**

Presence of Run/Riffle/Pool Complexes. Explain:

- **Not present.**

Tributary Geometry:

- **Relatively Straight**

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Estimate average number of flow events in review area/year: 2-5

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [x] Shelving
 - [] Vegetation matted down, bent or absent
 - [x] Leaf litter disturbed or washed away
 - [x] Sediment deposition
 - [x] Water staining
 - [] Other (list):
 - [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
-tidal gauges
- other

- Mean High water Mark indicated by: __________________________
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally -sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________

Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________

Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: __________________________

Ecological connection Explain: __________________________

Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: [] Width (ft): [] TNW Acres []
 - Wetlands adjacent to TNWs: Acres: []

2. **RPWs that flow directly or indirectly into TNWs**

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters Linear Feet: [] Width (Ft): []
 - Other non-wetland waters: Acres: []

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Feature ID: 290

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 1290.35 linear feet (ft), 5.71 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
	USDA Nat’l Res Conservation Service Soil Survey Citation:
	National Wetlands Inventory Maps Cite Map Name:
	State/Local Wetland Inventory Maps
	FEMA/FIRM Maps:
	100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
✓	Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
✓	Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
	Previous Determinations File No. and Date of Response Letter:
	Applicable/Supporting Case Law Citation:
	Applicable/Supporting Scientific Literature Citation:
	Other Information, Please Specify:
Additional Comments to Support JD:	
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 291

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00657
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation

Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []
- Mean high water mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: []
Identify specific pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor characteristics: []
- Wetland fringe characteristics: []
Habitat for:
- Federally listed species explain findings: []
- Fish/spawn areas explain findings: []
- Other environmentally sensitive species explain findings: []
- Aquatic/wildlife diversity explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW
(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland size (ac): []
- Wetland type, explain: []
- Wetland quality, explain: []
Project wetlands cross or serve as state boundaries, explain: []
(b) General flow relationship with non-TNW:
Wetland flow is: []
Explain: []
Surface flow is: []
Characteristics: []
Subsurface flow: []
Explain findings: []
(c) Wetland Adjacency Determination with Non-TNW:
- Wetland directly abutting non-TNW: []
- Wetland not directly abutting non-TNW: []
 - Discrete wetland hydrologic connection explain: []
 - Ecological connection explain: []
 - Separated by berm/barrier explain: []
(d) Proximity (relationship) to TNW
Project wetlands: river miles from TNW: []
Project wetlands: aerial miles from TNW: []
Flow is from: []
Estimate approximate location of wetland within floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: ______________ Width (ft): ______________ TNW Acres: ______________

☐ Wetlands adjacent to TNWs: Acres: ______________

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______________

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______________

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: ______________ Width (Ft): ______________

☐ Other non-wetland waters: Acres: ______________

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): ______________ Width (feet): ______________ Acres: ______________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______________

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______________

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 291

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Cops of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 292

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site:</td>
<td>Lat.</td>
<td>32.8482*N</td>
<td>Long.</td>
<td>-111.2599"W</td>
<td></td>
</tr>
<tr>
<td>Name of nearest waterbody:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC):</td>
<td>15050100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- [x] Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- [] Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- [] Office (Desk) Determination. Date:
- [x] Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No” navigable waters of the U.S."** within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

- [] Waters subject to the ebb and flow of the tide.
- [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No”waters of the U.S."** within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. **Waters of the U.S.**

 a. **Indicate presence of water of U.S. in review area (Check all the apply):**

 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. **Identify (estimate) size of waters of the U.S. in the review area**

Non-Wetlands waters	Linear Feet	Width (ft) and/or	Acres
Wetlands Acres:			

 c. **Limits (boundaries) of Jurisdiction based on:**

 2. Non-Regulated Waters/Wetlands (check if applicable):

 - [x] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: []

☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.08379
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☑ Tributary flows directly to TNW
 ☐ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- **Average Width (ft):** []
- **Average Depth (ft):** []
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Other, Explain: []

Substrate - Vegetation:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

Flow

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Estimate average number of flow events in review area/year: 2-5

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed: []

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community
 - [] Other (list): []

Discontinuous? Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- □ High tide line indicated by: __________________________
- □ Mean High water Mark indicated by: __________________________
- □ oil or scum line along shore objects __________________________
- □ fine shell or debris deposits (foreshore) __________________________
- □ physical markings/characteristics __________________________
- □ tidal gauges __________________________
- □ other __________________________

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- □ Riparian Corridor Characteristics: __________________________
- □ Wetland Fringe Characteristics: __________________________

Habitat for:

- □ Federally Listed Species Explain findings: __________________________
- □ Fish/Spawn Areas Explain findings: __________________________
- □ Other environmentally -sensitive species Explain findings: __________________________
- □ Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: __________________________ Explain: __________________________
- Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________ Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- □ Wetland Directly Abutting Non-TNW
- □ Wetland Not Directly Abutting Non-TNW

- □ Discrete wetland hydrologic connection Explain: __________________________
- □ Ecological connection Explain: __________________________
- □ Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: The above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 292

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 292

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ___________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs

(Name and Date):

Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs

(Name and Date):

Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 293

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599"W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or Acres</th>
</tr>
</thead>
</table>

Wetlands Acres:

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.13058
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobbles
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Estimate average number of flow events in review area/year: 2-5

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

 Mean High water Mark indicated by: []

 Survey to available datum []
 Physical markings []
 Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

 Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

 Properties:
 - Wetland Size (ac):
 - Wetland Type, Explain:
 - Wetland Quality, Explain:

 Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

 Wetland Flow is:
 Explain:

 Surface Flow is:

 Characteristics:

 Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

 - Wetland Directly Abutting Non-TNW []
 - Wetland Not Directly Abutting Non-TNW []

 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

 Project Wetlands: River Miles from TNW:
 Project Wetlands: Aerial Miles from TNW:

 Flow is From:

 Estimate approximate Location of Wetland within Floodplain:

 (iii) Chemical Characteristics:

 Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

 Explain:

 Identify Specific Pollutants, if known:

 (iv) Biological Characteristics. Channel supports (check all that apply):

 - Riparian Corridor Characteristics:
 - Wetland Fringe Characteristics:

 Habitat for:

 - Federally Listed Species Explain findings:
 - Fish/Spawn Areas Explain findings:
 - Other environmentally-sensitive species Explain findings:
 - Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

 (i) Physical Characteristics:

 (a) General Wetland Characteristics

 Properties:
 - Wetland Size (ac):
 - Wetland Type, Explain:
 - Wetland Quality, Explain:

 Project Wetlands Cross or Serve as State Boundaries, Explain:

 (b) General Flow Relationship with Non-TNW:

 Wetland Flow is:
 Explain:

 Surface Flow is:

 Characteristics:

 Subsurface Flow: Explain Findings:

 (c) Wetland Adjacency Determination with Non-TNW:

 - Wetland Directly Abutting Non-TNW []
 - Wetland Not Directly Abutting Non-TNW []

 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

 (d) Proximity (Relationship) to TNW

 Project Wetlands: River Miles from TNW:
 Project Wetlands: Aerial Miles from TNW:

 Flow is From:

 Estimate approximate Location of Wetland within Floodplain:

 (iii) Chemical Characteristics:

 Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

 Explain:

 Identify Specific Pollutants, if known:

 (iv) Biological Characteristics. Channel supports (check all that apply):

 - Riparian Corridor Characteristics:
 - Wetland Fringe Characteristics:

 Habitat for:

 - Federally Listed Species Explain findings:
 - Fish/Spawn Areas Explain findings:
 - Other environmentally-sensitive species Explain findings:
 - Aquatic/Wildlife diversity Explain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:

Habitat for:

- □ Federally Listed Species Explain:
- □ Fish/Spawn Areas Explain:
- □ Other environmentally-sensitive species Explain:
- □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - [] Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: __________ Width (Ft): __________
 - [] Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 1616.83 linear feet, 7.61 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>293</th>
</tr>
</thead>
</table>

Approved Jurisdictional Determination Form

U.S. Army Corps of Engineers

- **USDA Nat'l Res Conservation Service Soil Survey**
- **Citation:**
- **National Wetlands Inventory Maps**
- **Cite Map Name:**
- **State/Local Wetland Inventory Maps**
- **FEMA/FIRM Maps:**
- **100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)**
 - **Aerial Photographs**
 - **Name and Date:** Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - **Other Photographs**
 - **Name and Date:** Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations File No. and Date of Response Letter:**
- **Applicable/Supporting Case Law**
- **Citation:**
- **Applicable/Supporting Scientific Literature**
- **Citation:**
 - **Other Information, Please Specify:**
- **Additional Comments to Support JD:**
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 294

State: AZ County/Parish/borough: Pinal County City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.29049
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries.</td>
<td>Explain:</td>
</tr>
</tbody>
</table>

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Estimate average number of flow events in review area/year: 2-5

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- ☐ High tide line indicated by:
- ☐ Mean High water Mark indicated by:
- ☐ oil or scum line along shore objects
- ☐ fine shell or debris deposits (foreshore)
- ☐ physical markings/characteristics
- ☐ tidal gauges
- ☐ other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

☐ Riparian Corridor Characteristics:

☐ Wetland Fringe Characteristics:

Habitat for:

☐ Federally Listed Species Explain findings:

☐ Fish/Spawn Areas Explain findings:

☐ Other environmentally -sensitive species Explain findings:

☐ Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac):

Wetland Type, Explain:

Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is:

Surface Flow is:

Characteristics:

Subsurface Flow:

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

☐ Wetland Directly Abutting Non-TNW

☐ Wetland Not Directly Abutting Non-TNW

☐ Discrete wetland hydrologic connection Explain:

☐ Ecological connection Explain:

☐ Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):
☐ Vegetation type/percent cover. Explain:

Habitat for:
☐ Federally Listed Species Explain:
☐ Fish/Spawn Areas Explain:
☐ Other environmentally-sensitive species Explain:
☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Box</th>
<th>TNWs</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box</th>
<th>Wetlands adjacent to TNWs</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Box</th>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Box | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th>Box</th>
<th>Tributary waters</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box</th>
<th>Other non-wetland waters</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

| Box | Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length (Linear Feet)</th>
<th>Width (feet)</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Box</th>
<th>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box</th>
<th>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Box</th>
<th>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams):
length : width (ft):

☐ Other Non-wetland Waters MBR
acres:

☐ Wetlands MBR
acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters
4377.30 linear feet (ft),
5.99 width (ft)

☐ Other waters
acres

☐ Wetlands
acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 294

USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ___________________________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 295

State:	AZ
County/Parish/borough:	Pinal County
City:	N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICATION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.14703
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: [] Explain:

Surface Flow is: []

Characteristics: []

Subsurface Flow: [] Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):_ Acres:_

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters
- [] Other waters
- [] Wetlands

8. Impoundments of jurisdictional waters.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters
- [] Other waters
- [] Wetlands

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 295

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ____________________ (National Geodetic Vertical Datum of 1929)
 ☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 ☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 296

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters
Linear Feet
Width (ft) and/or
Acres

Wetlands Acres:

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: []
 - □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - (i) General Area Conditions:
 - Watershed Size (sq mi): 4,9650
 - Drainage Area (sq mi): 0.03236
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - (ii) Physical Characteristics:
 - (a) Relationship with TNW
 - □ Tributary flows directly to TNW
 - [] Tributary flows through [] tributaries before entering TNW
 - Project waters are [30 (or more)] river miles from TNW
| Feature ID: 296 |

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Bedrock
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for: Ephemeral Flow</th>
</tr>
</thead>
</table>

Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to SectionIII.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 □ TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______

 □ Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 □ Tributary waters Linear Feet: ______ Width (Ft): ______

 □ Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 385.36 linear feet (ft), 4.40 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 296

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ____________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 297
 State: AZ
 County/Parish/borough: Pinal County
 City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: []
 - Vegetation: []
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - **(i) General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.02485
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - **(ii) Physical Characteristics:**
 - **(a) Relationship with TNW**
 - [] Tributary flows directly to TNW
 - [✓] Tributary flows through [4] tributaries before entering TNW
 - Project waters are [30 (or more)] river miles from TNW
Feature ID: 297

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Gravel
- Bedrock
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects: []
- Fine shell or debris deposits (foreshore): []
- Physical markings: []
- Tidal gauges: []
- Other: []

- Mean High water Mark indicated by: []
- Survey to available datum: []
- Physical markings: []
- Vegetation lines/changes in vegetation types: []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor: []
- Characteristics:

- Wetland Fringe: []
- Characteristics:

Habitat for:

- Federally Listed Species: []
- Explain findings:

- Fish/Spawn Areas: []
- Explain findings:

- Other environmentally-sensitive species: []
- Explain findings:

- Aquatic/Wildlife diversity: []
- Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Explain:

- Surface Flow is:

- Characteristics:

- Subsurface Flow:
- Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW: []
- Wetland Not Directly Abutting Non-TNW: []

- Discrete wetland hydrologic connection: []
- Explain:

- Ecological connection: []
- Explain:

- Separated by berm/barrier: []
- Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

- Flow is From:

- Estimate approximate Location of Wetland within Floodplain:

- Hi	g	i	ne	line	indicated	by:

- Mean	High	water	Mark	indicated	by:

- Survey	to	available
datum:

- Physical	markings:

- Vegetation	lines/changes	in	vegetation	types:

- Cal	thetic	Tributary	(e.g.,	water
color	is
clear,
disco	ored,
oily	film;	water	quality;
general	watershed
characteristics,
etc):

- Identify	Specific	Pollutants,	if	known:

- Riparian	Corridor:

- Characteristics:

- Wetland	Fringe:

- Characteristics:

- Federally	Listed	Species:

- Explain	findings:

- Fish/Spawn	Areas:

- Explain	findings:

- Other	environmentally-sensitive	species:

- Explain	findings:

- Aquatic/Wildlife
diversity:

- Explain:

- Wetland	Size	(ac):

- Wetland	Type:

- Explain:

- Wetland	Quality:

- Explain:

- Project	Wetlands:

- Cross	or	Serve	as	State	Boundaries,

- Explain:

- Wetland	Flow	is:

- From:

- Estimate	approximate	Location	of	Wetland	within	Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):
☐ Vegetation type/percent cover. Explain:
Habitat for:
☐ Federally Listed Species Explain:
☐ Fish/Spawn Areas Explain:
☐ Other environmentally-sensitive species Explain:
☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D.

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Wetlands adjacent to TNWs:</th>
<th>Acres:</th>
</tr>
</thead>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters: Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (ft): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concors with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 297

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 298
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 □ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 □ Waters subject to the ebb and flow of the tide.
 □ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 □ TNWs (new)
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00206
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

| Average Width (ft): |
| Average Depth (ft): |
| Average Side Slopes: | 3:1 |

Primary tributary substrate composition (check all that apply):

- [] Silts
- [X] Sands
- [] Concrete
- [] Muck
- [X] Gravel
- [X] Substrate - Vegetation
- Other, Explain: |

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle.Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

- [X] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [X] OHWM (check all the apply): OHWM Indicators:
 - [X] Clear, natural line impressed on the bank
 - [X] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous? Explain:

Presence of litter and debris

- [] Destruction of terrestrial vegetation
- [X] Presence of wrack line
- [] Sediment sorting
- [X] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:
Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
- [] Wetlands adjacent to TNWs

 Linear Feet: Width (ft): TNW Acres

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - [] Tributary waters
 - [] Other non-wetland waters

 Linear Feet: Width (ft):

3. Non-RPWs that flow directly or indirectly into TNWs.

 [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): Length (linear feet) Acres:
☐ Other Non-wetland Waters MBR
☐ Wetlands MBR

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters
☐ Other waters
☐ Wetlands

SECTIONS: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 298

□ USDA Nat’l Res Conservation Service Soil Survey
□ National Wetlands Inventory Maps
□ State/Local Wetland Inventory Maps
□ FEMA/FIRM Maps:

□ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
☑ Other Photographs

☐ Previous Determinations

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 299
State: AZ
County/Parish/borough: Pinal
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW:
 ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.09681
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Poole Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
- Clear, natural line impressed on the bank
- Changes in soil character
- Shelving
- Vegetation matted down, bent or absent
- Leaf litter disturbed or washed away
- Sediment deposition
- Water staining

Other (list):

☐ Discontinuous? Explain:

Dye (or other) test performed:

[Blank space for additional information]
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

<table>
<thead>
<tr>
<th>High tide line indicated by:</th>
<th>Mean High water Mark indicated by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>oil or scum line along shore objects</td>
<td>survey to available datum</td>
</tr>
<tr>
<td>fine shell or debris deposits (foreshore)</td>
<td>physical markings</td>
</tr>
<tr>
<td>physical markings/characteristics</td>
<td>vegetation lines/changes in vegetation types</td>
</tr>
<tr>
<td>tidal gauges</td>
<td></td>
</tr>
<tr>
<td>other</td>
<td></td>
</tr>
</tbody>
</table>

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

<table>
<thead>
<tr>
<th>Riparian Corridor Characteristics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Fringe Characteristics:</td>
</tr>
</tbody>
</table>

Habitat for:

<table>
<thead>
<tr>
<th>Federally Listed Species Explain findings:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish/Spawn Areas Explain findings:</td>
</tr>
<tr>
<td>Other environmentally -sensitive species Explain findings:</td>
</tr>
<tr>
<td>Aquatic/Wildlife diversity Explain:</td>
</tr>
</tbody>
</table>

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

<table>
<thead>
<tr>
<th>Wetland Size (ac):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Type, Explain:</td>
</tr>
<tr>
<td>Wetland Quality, Explain:</td>
</tr>
</tbody>
</table>

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain: |

Surface Flow is: |

Characteristics: |

Subsurface Flow: Explain Findings: |

(c) Wetland Adjacency Determination with Non-TNW:

<table>
<thead>
<tr>
<th>Wetland Directly Abutting Non-TNW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Not Directly Abutting Non-TNW</td>
</tr>
</tbody>
</table>

Discrete wetland hydrologic connection Explain: |

Ecological connection Explain: |

Separated by berm/barrier Explain: |

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: |

Project Wetlands: Aerial Miles from TNW: |

Flow is From: |

Estimate approximate Location of Wetland within Floodplain: |
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:
This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - TNWs: Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - Wetlands adjacent to TNWs: Acres: __________

2. **RPWs that flow directly or indirectly into TNWs**

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: __________ Width (Ft): __________
 - Other non-wetland waters: Acres: __________

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters
- Wetlands

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Category</th>
<th>Option</th>
<th>Citation/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation</td>
<td>☐</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>☑</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs</td>
<td>☑</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>☐</td>
<td>File No. and Date of Response Letter</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law</td>
<td>☐</td>
<td>Citation</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>☐</td>
<td>Citation</td>
</tr>
<tr>
<td>Other Information, Please Specify</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 3

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - **(i) General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.04051
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - **(ii) Physical Characteristics:**
 - Relationship with TNW
 - ☑ Tributary flows directly to TNW
 - ☐ Tributary flows through [4] tributaries before entering TNW
 - Project waters are [30 (or more)] river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft): []
- Average Depth (ft): []
- Average Side Slopes: []

Primary tributary substrate composition (check all that apply):
- Silts []
- Sands []
- Concrete []
- Gravel []
- Bedrock []
- Substrate - Vegetation []
- Muck []
- Other, Explain: []

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed: []

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list): []

Discontinuous? []

Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

- Mean High water Mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: []
Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain: []
- Surface Flow is: []

Characteristics: []

Subsurface Flow: []
Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Not Directly Abutting Non-TNW []
 - Discrete wetland hydrologic connection Explain: []
 - Ecological connection Explain: []
 - Separated by berm/barrier Explain: []
- Wetland Directly Abutting Non-TNW []

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []

Flow is From: []
Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Description</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Description</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributary waters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Description</th>
<th>Length</th>
<th>Width</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates of jurisdictional waters within the review area (check all that apply):</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Description</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW</td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td></td>
</tr>
</tbody>
</table>

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Description</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.</td>
<td></td>
</tr>
<tr>
<td>Provide acreage estimates for jurisdictional wetland in the review area:</td>
<td></td>
</tr>
</tbody>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 3

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

✓ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

✓ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 30

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all that apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___________ Linear Feet
 Width (ft) and/or ___________ Acres
 Wetlands Acres: ___________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.10002
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 [] Tributary flows directly to TNW
 [] Tributary flows through [] tributaries before entering TNW
 Project waters are [] river miles from TNW
 [] 30 (or more)
<table>
<thead>
<tr>
<th>Feature ID: 30</th>
</tr>
</thead>
</table>

U.S Army Corps of Engineers

Project waters are 30 (or more) river Miles from tributary to RPW:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft): []
- Average Depth (ft): []
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

- Tributary Provides for: Ephemeral Flow
- Describe Flow Regime: Ephemeral.
- Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed: []

Other (list): []

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

□ Mean High water Mark indicated by:
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

Explain:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters: | Linear Feet: | Width (ft): |
 - Other non-wetland waters: | Acres: |

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 | Length (Linear Feet): | Width (feet): | Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.B, above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: | Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: | Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 30

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams) linear feet:
- Other Non-wetland Waters MBR:
- Wetlands MBR:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters:
- Other waters:
- Wetlands:

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 30

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 300
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ✓ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWS that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ✓ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00601
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through [x] tributaries before entering TNW
 Project waters are [30 (or more)] river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- [] Bedrock
- [] Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list):

Discontinuous?

Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

[] High tide line indicated by: ____________________________
[] Mean High water Mark indicated by: ______________________
[] oil or scum line along shore objects
[] fine shell or debris deposits (foreshore)
[] physical markings/characteristics
[] tidal gauges
[] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc): Explain: ________________________________

Identify Specific Pollutants, if known: ________________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

[] Riparian Corridor Characteristics: ________________________________
[] Wetland Fringe Characteristics: ________________________________

Habitat for:

[] Federally Listed Species Explain findings: ________________________________
[] Fish/Spawn Areas Explain findings: ________________________________
[] Other environmentally -sensitive species Explain findings: ________________________________
[] Aquatic/Wildlife diversity Explain: ________________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): ________________________________
Wetland Type, Explain: ________________________________
Wetland Quality, Explain: ________________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ________________________________
Surface Flow is: ________________________________
Characteristics: ________________________________
Subsurface Flow: ________________________________
Explain Findings: ________________________________

(c) Wetland Adjacency Determination with Non-TNW:

[] Wetland Directly Abutting Non-TNW
[] Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: ________________________________
Ecological connection Explain: ________________________________
Separated by berm/barrier Explain: ________________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ________________________________
Project Wetlands: Aerial Miles from TNW: ________________________________
Flow is From: ________________________________
Estimate approximate Location of Wetland within Floodplain: ________________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all of its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: __________ Width (ft): _______ TNW Acres ________
 - [] Wetlands adjacent to TNWs: Acres: ________

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdicational. Provide data and Rationale indicating that tributary is perennial: ________
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdicational. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ________
 Provide estimates for jurisdicational waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: _______ Width (Ft): _______
 - [] Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdicational. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdicational waters within the review area (check all that apply):
 Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdicational as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 Provide acreage estimates for jurisdicational wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdicational. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdicational wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters
☐ Other waters
☐ Wetlands

EXPLAIN FINDING OF NO SIGNIFICANT Nexus:

Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant: WestLand Resources, Inc.

Data Sheets Prepared/Submitted by Applicant/Consultant:

Office Concurs with data sheets/delineation report
Office Does Not Concur with data sheets/delineation report

Maps, Plans, Plots or Plat Submitted by Applicant/Consultant:

Corps Navigable Water Study
US Geological Survey Hydrologic Atlas
USGS NHD Data
USGS 8 and 12 digit HUC Maps

US Geological Survey Map(s): Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

☐ USDA Nat'l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 301

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No navigable waters of the U.S. within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No waters of the U.S. within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00306
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - (ii) Physical Characteristics:
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
☐ Silts ☐ Sands ☐ Concrete ☐ Muck
☐ Cobble ☐ Gravel ☐ Substrate - Vegetation ☐ Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
☐ Clear, natural line impressed on the bank Presence of litter and debris
☐ Changes in soil character Destruction of terrestrial vegetation
☐ Shelving Presence of wrack line
☐ Vegetation matted down, bent or absent Sediment sorting
☐ Leaf litter disturbed or washed away Scour
☐ Sediment deposition Multiple observed or predicted flow events
☐ Water staining Abrupt change in plant community
Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

* Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
* Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
* Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
* Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented here.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Wetland Type</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th>Tributary waters</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other non-wetland waters</td>
<td>Acres</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet)</th>
<th>Width (feet)</th>
<th>Acres</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 286.98 linear feet (ft), 4.85 width (ft)

☑ Other waters acres

☑ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>301</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey</td>
<td>Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs</td>
<td>Name and Date: Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law</td>
<td>Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
<td></td>
</tr>
</tbody>
</table>
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 302
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ___________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02416
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft):</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- **Silts**
- **Cobbles**
- **Bedrock**
- **Sands**
- **Concrete**
- **Gravel**
- **Substrate - Vegetation**
- **Muck**
- **Other, Explain:**

Tributary Condition/Stability
- **[e.g., highly eroding, sloughing banks. Explain:]** Stable.

Presence of Run/Riffle/Pool Complexes
- **Explain:** Not present.

Tributary Geometry
- **Relatively Straight**

Tributary Gradient (approximate average slope):
- **1%**

(c) Flow

Tributary Provides for:
- **Ephemeral Flow**

Estimate average number of flow events in review area/year:
- **2-5**

Describe Flow Regime:
- **Ephemeral.**

Other Information on Duration and Volume:

Surface Flow is:
- **Discrete and Confined**

Subsurface Flow:
- **No**

Dye (or other) test performed:
- **Explain:**

Tributary Has (Check all that apply):

- **Bed and Banks**
- **OHWM (check all the apply):** OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - **Presence of litter and debris**
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous?
- **Explain:**
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known:

[]

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally-sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: []
- Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

Discrete wetland hydrologic connection Explain: []

Ecological connection Explain: []

Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - **TNWs**
 - Linear Feet: [] Width (ft): [] TNW Acres []
 - **Wetlands adjacent to TNWs:** Acres: []

2. **RPWs that flow directly or indirectly into TNWs**
 - **Tributaries of TNWs where tributaries typically flow year-round are jurisdictional.** Provide data and Rationale indicating that tributary is perennial: []
 - **Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional.** Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - **Tributary waters** Linear Feet: [] Width (Ft): []
 - **Other non-wetland waters** Acres: []

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - **Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional.** Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - **Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.**
 - **Wetlands directly abutting an RPW where tributaries typically flow year-round.** Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - **Wetlands directly abutting an RPW where tributaries typically flow "Seasonally".** Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - **Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional.** Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): __________

7. Impoundments of jurisdictional waters.
 Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________
Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters __________
Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________
☐ Other Non-wetland Waters MBR acres: __________
☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 521.92 linear feet (ft), 3.86 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat'l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

☐ Other Information, Please Specify:

Additional Comments to Support JD:
Approved Jurisdictional Determination Form

U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

Section I: Background Information

A. Report Completion Date for Approved Jurisdictional Determination (JD) July 5, 2013

B. District Office, File Name, and Number

Los Angeles District, File No. Pending

C. Project Location and Background Information: Drainage Feature 303

State: AZ

County/Parish/borough: Pinal County

City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

Section II: Summary of Findings

A. RHA Section 10 Determination of Jurisdiction

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA Section 404 Determination of Jurisdiction

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: _________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00120
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Bedrock
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:
Subsurface Flow: No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):

- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review are (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 257.30 linear feet (ft), 3.37 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 303</th>
</tr>
</thead>
</table>

USDA Nat'l Res Conservation Service Soil Survey
- Citation: [Blank]

National Wetlands Inventory Maps
- Cite Map Name: [Blank]

State/Local Wetland Inventory Maps

FEMA/FIRM Maps

100-year Floodplain Elevation is: [Blank]
- (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs**
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs**
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations
- File No. and Date of Response Letter: [Blank]

Applicable/Supporting Case Law Citation

Applicable/Supporting Scientific Literature Citation

Other Information, Please Specify

Additional Comments to Support JD:

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 304

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site:</td>
<td>Lat.</td>
<td>32.8482°N</td>
<td>Long.</td>
<td>-111.2599°W</td>
<td></td>
</tr>
<tr>
<td>Name of nearest waterbody:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC):</td>
<td>15050100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.45986
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary is:</td>
<td>Natural</td>
</tr>
<tr>
<td>Tributary properties with respect to top of bank (estimate):</td>
<td></td>
</tr>
<tr>
<td>Average Width (ft):</td>
<td>[]</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
<td>[]</td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
</tr>
<tr>
<td>Primary tributary substrate composition (check all that apply):</td>
<td></td>
</tr>
<tr>
<td>Silts</td>
<td>☑</td>
</tr>
<tr>
<td>Sands</td>
<td>☐</td>
</tr>
<tr>
<td>Concrete</td>
<td>☐</td>
</tr>
<tr>
<td>Muck</td>
<td>☐</td>
</tr>
<tr>
<td>Cobbles</td>
<td>☐</td>
</tr>
<tr>
<td>Gravel</td>
<td>☐</td>
</tr>
<tr>
<td>Substrate - Vegetation</td>
<td>☑</td>
</tr>
<tr>
<td>Other, Explain:</td>
<td>[]</td>
</tr>
<tr>
<td>Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain:</td>
<td>Stable.</td>
</tr>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain:</td>
<td>Not present.</td>
</tr>
<tr>
<td>Tributary Geometry:</td>
<td>Relatively Straight</td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope):</td>
<td>1%</td>
</tr>
</tbody>
</table>

(c) Flow:

Provide for:	Ephemeral Flow
Estimate average number of flow events in review area/year:	2-5
Describe Flow Regime:	Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:	Discrete and Confined
Subsurface Flow:	No
Dye (or other) test performed:	[]

Tributary Has (Check all that apply):

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed and Banks</td>
<td></td>
</tr>
<tr>
<td>OHWM (check all the apply):</td>
<td></td>
</tr>
<tr>
<td>Clear, natural line impressed on the bank</td>
<td>☑</td>
</tr>
<tr>
<td>Changes in soil character</td>
<td>☑</td>
</tr>
<tr>
<td>Shelving</td>
<td></td>
</tr>
<tr>
<td>Vegetation matted down, bent or absent</td>
<td></td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
<td></td>
</tr>
<tr>
<td>Sediment deposition</td>
<td></td>
</tr>
<tr>
<td>Water staining</td>
<td></td>
</tr>
<tr>
<td>Presence of litter and debris</td>
<td>☑</td>
</tr>
<tr>
<td>Destruction of terrestrial vegetation</td>
<td>☐</td>
</tr>
<tr>
<td>Presence of wrack line</td>
<td></td>
</tr>
<tr>
<td>Sediment sorting</td>
<td></td>
</tr>
<tr>
<td>Scour</td>
<td>☑</td>
</tr>
<tr>
<td>Multiple observed or predicted flow events</td>
<td></td>
</tr>
<tr>
<td>Abrupt change in plant community</td>
<td></td>
</tr>
<tr>
<td>Other (list):</td>
<td>[]</td>
</tr>
<tr>
<td>Discontinuous?</td>
<td>Explain: []</td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________
- Mean High water Mark indicated by: __________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________

Identify Specific Pollutants, if known:

Explain:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________
- Wetland Fringe Characteristics: __________

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________

Surface Flow:
- Characteristics:

Subsurface Flow: __________

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
- [] Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []

Provide estimates for jurisdictional waters in the review area (check all that apply):

- [] Tributary waters Linear Feet: [] Width (ft): []
- [] Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

- [] Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []

Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 304

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 304

USDA Nat’l Res Conservation Service Soil Survey Citation: [Blank]
National Wetlands Inventory Maps Cite Map Name: [Blank]
State/Local Wetland Inventory Maps
FEMA/FIRM Maps: [Blank]
100-year Floodplain Elevation is: [Blank] (National Geodetic Vertical Datum of 1929)
Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
Previous Determinations File No. and Date of Response Letter: [Blank]
Applicable/Supporting Case Law Citation: [Blank]
Applicable/Supporting Scientific Literature Citation: [Blank]
Other Information, Please Specify: [Blank]
Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 305

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S. within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S. within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWS that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWS that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWS that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWS that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

A wetland that is adjacent to but that does not directly abut an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - **(i) General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00452
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - **(ii) Physical Characteristics:**
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are

River Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are

aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):

Average Width (ft):

Average Depth (ft):

Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:
Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:
Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
 Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:
- □ Habitat for:
 - □ Federally Listed Species Explain:
 - □ Fish/Spawn Areas Explain:
 - □ Other environmentally-sensitive species Explain:
 - □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ___________ Acres: ___________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ___________ width (ft): ___________

☐ Other Non-wetland Waters MBR acres: ___________

☐ Wetlands MBR acres: ___________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 168.83 linear feet (ft), 4.11 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 305

USDA Nat’l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM
Maps:

100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations
File No. and Date of Response Letter:

Applicable/Supporting Case Law
Citation:

Applicable/Supporting Scientific Literature
Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 306

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):
15050100

- **☑** Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- **☐** Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- **☐** Office (Desk) Determination. Date:
- **☑** Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- **☐** Waters subject to the ebb and flow of the tide.
- **☐** Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 - **a.** Indicate presence of water of U.S. in review area (Check all the apply):
 - **☐** TNWs (new)
 - **☐** Wetlands adjacent to TNWs
 - **☐** Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - **☐** Non-RPWs that flow directly or indirectly into TNWs
 - **☐** Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - **☐** Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - **☐** Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - **☐** Impoundments of jurisdictional waters
 - **☐** Isolated (interstate or intrastate) waters, including isolated wetlands

 - **b.** Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters	Linear Feet	Width (ft) and/or	Acres

 Wetlands Acres:

 - **c.** Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 - **☑** Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 - Identify TNW: []
 - [] Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.46645
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 - [] Tributary flows directly to TNW
 - [] Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
Silts ☑
Cobbles ☑
Bedrock ☐
Sands ☐
Concrete ☐
Gravel ☐
Muck ☐
Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:
Tributary Has (Check all that apply):
Bed and Banks
☑ OHWM (check all the apply): OHWM Indicators:
☐ Clear, natural line impressed on the bank
☑ Changes in soil character
☐ Shelving
☐ Vegetation matted down, bent or absent
☐ Leaf litter disturbed or washed away
☐ Sediment deposition
☐ Water staining
Presence of litter and debris
☐ Destruction of terrestrial vegetation
☐ Presence of wrack line
☐ Sediment sorting
☐ Scour
☐ Multiple observed or predicted flow events
☐ Abrupt change in plant community
Other (list):
Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ___
- Mean High water Mark indicated by: ___
- oil or scum line along shore objects ___
- fine shell or debris deposits (foreshore) ___
- physical markings/characteristics ___
- tidal gauges ___
- other ___

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___

Identify Specific Pollutants, if known: ___

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___
- Wetland Fringe Characteristics: ___

Habitat for:

- Federally Listed Species Explain findings: ___
- Fish/Spawn Areas Explain findings: ___
- Other environmentally-sensitive species Explain findings: ___
- Aquatic/Wildlife diversity Explain: ___

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ___
- Wetland Type, Explain: ___
- Wetland Quality, Explain: ___

Project Wetlands Cross or Serve as State Boundaries, Explain: ___

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ___
- Surface Flow is: ___

Characteristics: ___

- Subsurface Flow: Explain Findings: ___

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW ___
- Wetland Not Directly Abutting Non-TNW ___

Discrete wetland hydrologic connection Explain: ___

Ecological connection: Explain: ___

Separated by berm/barrier: Explain: ___

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ___

Project Wetlands: Aerial Miles from TNW: ___

Flow is From: ___

Estimate approximate Location of Wetland within Floodplain: ___
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

 All wetland(s) being considered in cumulative analysis:

 Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: [] Width (ft): [] TNW Acres []
 - Wetlands adjacent to TNWs: Acres []

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: [] Width (ft): []
 - Other non-wetland waters: Acres []

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 306

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ________________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs

(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Ground Photos; June through July 2012, September through October 2012

Previous Determinations

File No. and Date of Response Letter:

Applicable/Supporting Case Law

Citation:

Applicable/Supporting Scientific Literature

Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 307
 State: AZ
 County/Parish/borough: Pinal
 City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

 Name of watershed or Hydrologic Unit Code (HUC): 15050100

 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☑ Wetlands adjacent to TNWs
 ☑ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters [________] Linear Feet [________] Width (ft) and/or [________] Acres
 Wetlands Acres: [________]

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Watershed Size (sq mi):</th>
<th>49650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Area (sq mi):</td>
<td>0.00186</td>
</tr>
<tr>
<td>Average Annual Rainfall (in):</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in):</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW
☑ Tributary flows through _______ tributaries before entering TNW

Project waters are _______ (or more) river miles from TNW
The document contains a form titled "APPROVED JURISDICTIONAL DETERMINATION FORM" from the U.S. Army Corps of Engineers. The form includes various sections for data entry and explanation, such as:

- **Project waters are**
 - river
 - Miles from tributary to RPW:
 - aerial (straight) miles from tributary to TNW:
 - aerial (straight) miles from tributary to RPW:
- **Project waters cross or serve as state boundaries.**
 - Explain:
- **Identify flow route to TNW**
 - Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
- **Tributary is:**
 - Natural
 - Explain:
- **Tributary properties with respect to top of bank (estimate):**
 - Average Width (ft):
 - Average Depth (ft):
 - Average Side Slopes: 3:1
- **Primary tributary substrate composition (check all that apply):**
 - Silts
 - Sands
 - Concrete
 - Muck
 - Cobble
 - Gravel
 - Substrate - Vegetation
 - Other, Explain:
- **Tributary Condition/Stability** [e.g., highly eroding, sloughing banks. Explain:]
 - Stable.
- **Presence of Run/Riffle/Pool Complexes.**
 - Not present.
- **Tributary Geometry:**
 - Relatively Straight
- **Tributary Gradient (approximate average slope):**
 - 1%

(c) Flow
- **Tributary Provides for:**
 - Ephemeral Flow
- **Estimate average number of flow events in review area/year:**
 - 2-5
- **Describe Flow Regime:**
 - Ephemeral.
- **Other Information on Duration and Volume:**
- **Surface Flow is:**
 - Discrete and Confined
 - Characteristics:
- **Subsurface Flow:**
 - No
 - Explain:
- **Dye (or other) test performed:**

Tributary Has (Check all that apply):
- Bed and Banks
- **OHWM (check all the apply):**
 - OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
- **Discontinuous?**
 - Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ____________________________
- [] Mean High water Mark indicated by: ____________________________
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: __________________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ____________________________
- [] Wetland Fringe Characteristics: ____________________________

Habitat for:

- [] Federally Listed Species Explain findings: ____________________________
- [] Fish/Spawn Areas Explain findings: ____________________________
- [] Other environmentally-sensitive species Explain findings: ____________________________
- [] Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): ____________________________
Wetland Type, Explain: ____________________________
Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________
Surface Flow is: ____________________________

Characteristics: ____________________________
Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain: ____________________________
- [] Ecological connection Explain: ____________________________
- [] Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______
 - [] Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: ______ Width (Ft): ______
 - [] Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [x] Non-wetland waters linear feet (ft), acres
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [x] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [x] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- [x] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 307</th>
</tr>
</thead>
</table>

| USDA Nat’l Res Conservation Service Soil Survey | Citation: |
| National Wetlands Inventory Maps | Cite Map Name: |
| State/Local Wetland Inventory Maps |

| FEMA/FIRM Maps: |
| 100-year Floodplain Elevation is: | (National Geodetic Vertical Datum of 1929) |

- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012

| Previous Determinations | File No. and Date of Response Letter: |
| Applicable/Supporting Case Law Citation: |
| Applicable/Supporting Scientific Literature Citation: |

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 308

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):
15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S. within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S. within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [Blank] □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01996
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>High tide line indicated by</td>
<td>☐</td>
</tr>
<tr>
<td>Oil or scum line along shore objects</td>
<td>☐</td>
</tr>
<tr>
<td>Fine shell or debris deposits (foreshore)</td>
<td>☐</td>
</tr>
<tr>
<td>Physical markings/characteristics</td>
<td>☐</td>
</tr>
<tr>
<td>Tidal gauges</td>
<td>☐</td>
</tr>
<tr>
<td>Other</td>
<td>☐</td>
</tr>
<tr>
<td>Mean High water Mark indicated by</td>
<td>☐</td>
</tr>
<tr>
<td>Survey to available datum</td>
<td>☐</td>
</tr>
<tr>
<td>Physical markings</td>
<td>☐</td>
</tr>
<tr>
<td>Vegetation lines/changes in vegetation types</td>
<td>☐</td>
</tr>
</tbody>
</table>

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain</td>
<td></td>
</tr>
</tbody>
</table>

Identify Specific Pollutants, if known:

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain</td>
<td></td>
</tr>
</tbody>
</table>

(iv) Biological Characteristics. Channel supports (check all that apply):

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riparian Corridor Characteristics</td>
<td></td>
</tr>
<tr>
<td>Wetland Fringe Characteristics</td>
<td></td>
</tr>
<tr>
<td>Habitat for</td>
<td></td>
</tr>
<tr>
<td>Federally Listed Species</td>
<td>☐</td>
</tr>
<tr>
<td>Fish/Spawn Areas</td>
<td>☐</td>
</tr>
<tr>
<td>Other environmentally -sensitive species</td>
<td>☐</td>
</tr>
<tr>
<td>Aquatic/Wildlife diversity</td>
<td>☐</td>
</tr>
<tr>
<td>Explain findings</td>
<td></td>
</tr>
</tbody>
</table>

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td></td>
</tr>
<tr>
<td>Wetland Size (ac)</td>
<td></td>
</tr>
<tr>
<td>Wetland Type, Explain</td>
<td></td>
</tr>
<tr>
<td>Wetland Quality, Explain</td>
<td></td>
</tr>
<tr>
<td>Project Wetlands Cross or Serve as State Boundaries, Explain</td>
<td></td>
</tr>
</tbody>
</table>

(b) General Flow Relationship with Non-TNW:

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Flow is</td>
<td></td>
</tr>
<tr>
<td>Explain</td>
<td></td>
</tr>
<tr>
<td>Surface Flow is</td>
<td></td>
</tr>
<tr>
<td>Characteristics</td>
<td></td>
</tr>
<tr>
<td>Subsurface Flow</td>
<td></td>
</tr>
<tr>
<td>Explain Findings</td>
<td></td>
</tr>
</tbody>
</table>

(c) Wetland Adjacency Determination with Non-TNW:

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Not Directly Abutting Non-TNW</td>
<td>☐</td>
</tr>
<tr>
<td>Discrete wetland hydrologic connection</td>
<td>☐</td>
</tr>
<tr>
<td>Ecological connection</td>
<td>☐</td>
</tr>
<tr>
<td>Separated by berm/barrier</td>
<td>☐</td>
</tr>
<tr>
<td>Explain</td>
<td></td>
</tr>
</tbody>
</table>

(d) Proximity (Relationship) to TNW

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Wetlands: River Miles from TNW:</td>
<td></td>
</tr>
<tr>
<td>Project Wetlands: Aerial Miles from TNW:</td>
<td></td>
</tr>
<tr>
<td>Flow is From</td>
<td></td>
</tr>
<tr>
<td>Estimate approximate Location of Wetland within Floodplain</td>
<td></td>
</tr>
</tbody>
</table>

Neutral content:

- If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other
- Mean High water Mark indicated by
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain</td>
<td></td>
</tr>
</tbody>
</table>

Identify Specific Pollutants, if known:

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain</td>
<td></td>
</tr>
</tbody>
</table>

(iv) Biological Characteristics. Channel supports (check all that apply):

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riparian Corridor Characteristics</td>
<td></td>
</tr>
<tr>
<td>Wetland Fringe Characteristics</td>
<td></td>
</tr>
<tr>
<td>Habitat for</td>
<td></td>
</tr>
<tr>
<td>Federally Listed Species</td>
<td>☐</td>
</tr>
<tr>
<td>Fish/Spawn Areas</td>
<td>☐</td>
</tr>
<tr>
<td>Other environmentally -sensitive species</td>
<td>☐</td>
</tr>
<tr>
<td>Aquatic/Wildlife diversity</td>
<td>☐</td>
</tr>
<tr>
<td>Explain findings</td>
<td></td>
</tr>
</tbody>
</table>

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td></td>
</tr>
<tr>
<td>Wetland Size (ac)</td>
<td></td>
</tr>
<tr>
<td>Wetland Type, Explain</td>
<td></td>
</tr>
<tr>
<td>Wetland Quality, Explain</td>
<td></td>
</tr>
<tr>
<td>Project Wetlands Cross or Serve as State Boundaries, Explain</td>
<td></td>
</tr>
</tbody>
</table>

(b) General Flow Relationship with Non-TNW:

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Flow is</td>
<td></td>
</tr>
<tr>
<td>Explain</td>
<td></td>
</tr>
<tr>
<td>Surface Flow is</td>
<td></td>
</tr>
<tr>
<td>Characteristics</td>
<td></td>
</tr>
<tr>
<td>Subsurface Flow</td>
<td></td>
</tr>
<tr>
<td>Explain Findings</td>
<td></td>
</tr>
</tbody>
</table>

(c) Wetland Adjacency Determination with Non-TNW:

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Not Directly Abutting Non-TNW</td>
<td>☐</td>
</tr>
<tr>
<td>Discrete wetland hydrologic connection</td>
<td>☐</td>
</tr>
<tr>
<td>Ecological connection</td>
<td>☐</td>
</tr>
<tr>
<td>Separated by berm/barrier</td>
<td>☐</td>
</tr>
<tr>
<td>Explain</td>
<td></td>
</tr>
</tbody>
</table>

(d) Proximity (Relationship) to TNW

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Wetlands: River Miles from TNW:</td>
<td></td>
</tr>
<tr>
<td>Project Wetlands: Aerial Miles from TNW:</td>
<td></td>
</tr>
<tr>
<td>Flow is From</td>
<td></td>
</tr>
<tr>
<td>Estimate approximate Location of Wetland within Floodplain</td>
<td></td>
</tr>
</tbody>
</table>

Neutral content:

- If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other
- Mean High water Mark indicated by
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain</td>
<td></td>
</tr>
</tbody>
</table>

Identify Specific Pollutants, if known:

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain</td>
<td></td>
</tr>
</tbody>
</table>

(iv) Biological Characteristics. Channel supports (check all that apply):

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riparian Corridor Characteristics</td>
<td></td>
</tr>
<tr>
<td>Wetland Fringe Characteristics</td>
<td></td>
</tr>
<tr>
<td>Habitat for</td>
<td></td>
</tr>
<tr>
<td>Federally Listed Species</td>
<td>☐</td>
</tr>
<tr>
<td>Fish/Spawn Areas</td>
<td>☐</td>
</tr>
<tr>
<td>Other environmentally -sensitive species</td>
<td>☐</td>
</tr>
<tr>
<td>Aquatic/Wildlife diversity</td>
<td>☐</td>
</tr>
<tr>
<td>Explain findings</td>
<td></td>
</tr>
</tbody>
</table>

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td></td>
</tr>
<tr>
<td>Wetland Size (ac)</td>
<td></td>
</tr>
<tr>
<td>Wetland Type, Explain</td>
<td></td>
</tr>
<tr>
<td>Wetland Quality, Explain</td>
<td></td>
</tr>
<tr>
<td>Project Wetlands Cross or Serve as State Boundaries, Explain</td>
<td></td>
</tr>
</tbody>
</table>

(b) General Flow Relationship with Non-TNW:

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Flow is</td>
<td></td>
</tr>
<tr>
<td>Explain</td>
<td></td>
</tr>
<tr>
<td>Surface Flow is</td>
<td></td>
</tr>
<tr>
<td>Characteristics</td>
<td></td>
</tr>
<tr>
<td>Subsurface Flow</td>
<td></td>
</tr>
<tr>
<td>Explain Findings</td>
<td></td>
</tr>
</tbody>
</table>

(c) Wetland Adjacency Determination with Non-TNW:

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Not Directly Abutting Non-TNW</td>
<td>☐</td>
</tr>
<tr>
<td>Discrete wetland hydrologic connection</td>
<td>☐</td>
</tr>
<tr>
<td>Ecological connection</td>
<td>☐</td>
</tr>
<tr>
<td>Separated by berm/barrier</td>
<td>☐</td>
</tr>
<tr>
<td>Explain</td>
<td></td>
</tr>
</tbody>
</table>

(d) Proximity (Relationship) to TNW

<table>
<thead>
<tr>
<th>Description</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Wetlands: River Miles from TNW:</td>
<td></td>
</tr>
<tr>
<td>Project Wetlands: Aerial Miles from TNW:</td>
<td></td>
</tr>
<tr>
<td>Flow is From</td>
<td></td>
</tr>
<tr>
<td>Estimate approximate Location of Wetland within Floodplain</td>
<td></td>
</tr>
</tbody>
</table>
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

<table>
<thead>
<tr>
<th>Item</th>
<th>Explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riparian Buffer</td>
<td></td>
</tr>
<tr>
<td>Characteristics (type, average width)</td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td></td>
</tr>
<tr>
<td>type/percent cover.</td>
<td>Explain</td>
</tr>
<tr>
<td>Habitat for:</td>
<td></td>
</tr>
<tr>
<td>Federally Listed Species</td>
<td>Explain</td>
</tr>
<tr>
<td>Fish/Spawn Areas</td>
<td>Explain</td>
</tr>
<tr>
<td>Other environmentally-sensitive species</td>
<td>Explain</td>
</tr>
<tr>
<td>Aquatic/Wildlife Diversity</td>
<td>Explain</td>
</tr>
</tbody>
</table>

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs
- Linear Feet: Width (ft): TNW Acres
- Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
308

Feature ID: 308

U.S Army Corps of Engineers

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 213.28 linear feet (ft), 5.12 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 308</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army Corps of Engineers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USDA Nat'l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
<td></td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>Name and Date: Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law</td>
<td>Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation:</td>
</tr>
</tbody>
</table>

Other Information, Please Specify: |

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 309

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters
 Linear Feet
 Width (ft) and/or
 Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
Identify TNW: ____________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00904
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW

 ☑ Tributary flows through _______ tributaries before entering TNW

 Project waters are _______ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
☐ Dye (or other) test performed:
Tributary Has (Check all that apply):
☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
- Clear, natural line impressed on the bank
- Changes in soil character
- Shelving
- Vegetation matted down, bent or absent
- Leaf litter disturbed or washed away
- Sediment deposition
- Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community
Other (list):
☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________
- Oil or scum line along shore objects __________________
- Fine shell or debris deposits (foreshore) _______________
- Physical markings/characteristics _____________________
- Tidal gauges ______________________________________
- Other ___

(iii) Chemical Characteristics:

Charaterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: __________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________
- Wetland Fringe Characteristics: _______________________

Habitat for:

- Federally Listed Species Explain findings: ____________
- Fish/Spawn Areas Explain findings: ___________________
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain: ____________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________
- Wetland Type, Explain: __________________
- Wetland Quality, Explain: _______________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ___________________ Explain: __________

Surface Flow is: ____________________

Characteristics: ____________________

Subsurface Flow: ____________________ Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: __________

Ecological connection Explain: _______________________

Separated by berm/barrier Explain: ___________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: _______________

Project Wetlands: Aerial Miles from TNW: _______________

Flow is From: ________________________________

Estimate approximate Location of Wetland within Floodplain: ____________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Wetlands adjacent to TNWs:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Other non-wetland waters:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams):
 linear feet:
 width (ft):
- Other Non-wetland Waters MBR
 acres:
- Wetlands MBR
 acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters
 linear feet (ft),
 width (ft)
- Other waters
 acres
- Wetlands
 acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by
 Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 Office Concurs with data sheets/delineation report
 Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s)
 Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 309

1. USDA Nat’l Res Conservation Service Soil Survey
2. National Wetlands Inventory Maps
3. State/Local Wetland Inventory Maps
4. FEMA/FIRM Maps
5. 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

- Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

- Previous Determinations File No. and Date of Response Letter:

- Applicable/Supporting Case Law Citation:

- Applicable/Supporting Scientific Literature Citation:

- Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 31

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters ______ Linear Feet ______ Width (ft) and/or ______ Acres

Wetlands Acres: ______

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: __________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02733
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>30 (or more) aerial (straight) miles from tributary to TNW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>aerial (straight) miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project waters cross or serve as state boundaries.</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary tributary substrate composition (check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Silts</td>
</tr>
<tr>
<td>☑ Sands</td>
</tr>
<tr>
<td>☑ Concrete</td>
</tr>
<tr>
<td>☑ Muck</td>
</tr>
<tr>
<td>☐ Sands</td>
</tr>
<tr>
<td>☐ Concrete</td>
</tr>
<tr>
<td>☐ Muck</td>
</tr>
<tr>
<td>Other, Explain:</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:</th>
<th>Stable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain:</td>
<td>Not present.</td>
</tr>
<tr>
<td>Tributary Geometry:</td>
<td>Relatively Straight</td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope):</td>
<td>1%</td>
</tr>
</tbody>
</table>

(c) Flow

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate average number of flow events in review area/year:</th>
<th>2-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Describe Flow Regime:</th>
<th>Ephemeral.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Information on Duration and Volume:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
<th>Discrete and Confined Characteristics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsurface Flow:</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Explain:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>☐ Dye (or other) test performed:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tributary Has (Check all that apply):

<table>
<thead>
<tr>
<th>☐ Bed and Banks</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>☑ OHWM (check all the apply): OHWM Indicators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear, natural line impressed on the bank</td>
</tr>
<tr>
<td>☑ Changes in soil character</td>
</tr>
<tr>
<td>Shelving</td>
</tr>
<tr>
<td>☑ Vegetation matted down, bent or absent</td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
</tr>
<tr>
<td>☑ Sediment deposition</td>
</tr>
<tr>
<td>☑ Water staining</td>
</tr>
<tr>
<td>Presence of litter and debris</td>
</tr>
<tr>
<td>☑ Presence of litter and debris</td>
</tr>
<tr>
<td>☐ Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>☑ Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>☑ Presence of wrack line</td>
</tr>
<tr>
<td>☑ Sediment sorting</td>
</tr>
<tr>
<td>☑ Sediment sorting</td>
</tr>
<tr>
<td>☑ Scour</td>
</tr>
<tr>
<td>☑ Scour</td>
</tr>
<tr>
<td>☐ Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>☐ Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>☑ Abrupt change in plant community</td>
</tr>
<tr>
<td>☑ Abrupt change in plant community</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other (list):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>☐ Discontinuous?</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ___________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

- Mean High water Mark indicated by: ___________________________
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___________________________

Identify Specific Pollutants, if known: ___________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___________________________
- Wetland Fringe Characteristics: ___________________________

Habitat for:

- Federally Listed Species Explain findings: ___________________________
- Fish/Spawn Areas Explain findings: ___________________________
- Other environmentally-sensitive species Explain findings: ___________________________
- Aquatic/Wildlife diversity Explain: ___________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ___________________________
- Wetland Type, Explain: ___________________________
- Wetland Quality, Explain: ___________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ___________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ___________________________

Surface Flow is: ___________________________

- Characteristics: ___________________________

Subsurface Flow: ___________________________

Explain Findings: ___________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ___________________________
 - Ecological connection Explain: ___________________________
 - Separated by berm/barrier Explain: ___________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ___________________________

Project Wetlands: Aerial Miles from TNW: ___________________________

Flow is From: ___________________________

Estimate approximate Location of Wetland within Floodplain: ___________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

- All wetland(s) being considered in cumulative analysis:
- Wetland acres in total being considered in cumulative analysis:
- Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: ____________________ Width (ft): __________ TNW Acres: __________

☐ Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: __________ Width (Ft): __________

☐ Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- □ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- □ Other Non-wetland Waters MBR acres:
- □ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- ✔ Non-wetland waters linear feet (ft), width (ft)
- □ Other waters acres
- □ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- ✔ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- ✔ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- □ Data Sheets Prepared by the Corps
- □ Corps Navigable Water Study
- □ US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- ✔ US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 31

USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 310

- **State:** AZ
- **County/Parish/borough:** Pinal County
- **City:** N/A

- **Center coordinates of site:**
 - Lat.: 32.8482°N
 - Long.: -111.2599°W

- **Name of nearest waterbody:** Gila River between Powers Butte and Gillespie Dam

- **Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:**

- **Name of watershed or Hydrologic Unit Code (HUC):** 15050100

- **Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request:**
 - []

- **Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form:**
 - []

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

- There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
- [] Waters subject to the ebb and flow of the tide.
- [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

- There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

 1. Waters of the U.S.

 a. **Indicate presence of water of U.S. in review area (Check all the apply):**

 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. **Identify (estimate) size of waters of the U.S. in the review area**

 - Non-Wetlands waters
 - Linear Feet
 - Width (ft) and/or
 - Acres

 - Wetlands Acres:

 c. **Limits (boundaries) of Jurisdiction based on:**

 2. Non-Regulated Waters/Wetlands (check if applicable):

 - [] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.11725
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through _______ tributaries before entering TNW

 Project waters are _______ (or more) river miles from TNW
(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- **Average Width (ft):** []
- **Average Depth (ft):** []
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:] Stable.

**Presence of Run/Riffle/Pool Complexes. Explain: ** Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

[] Dye (or other) test performed: []

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

[] Discontinuous? Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

- Mean High water Mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Charaterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:
 - Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

| □ TNWs | Linear Feet: | Width (ft): | TNW Acres |
| □ Wetlands adjacent to TNWs: | Acres: |

2. RPWs that flow directly or indirectly into TNWs

| □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: |
| □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: |

Provide estimates for jurisdictional waters in the review area (check all that apply):

| □ Tributary waters | Linear Feet: | Width (ft): |
| □ Other non-wetland waters: | Acres: |

3. Non-RPWs that flow directly or indirectly into TNWs.

| □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. |

Provide estimates of jurisdictional waters within the review area (check all that apply):

| Length (Linear Feet): | Width (feet): | Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

| □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. |

| □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: |

| □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is season in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: |

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. |

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): []

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: []

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: []

Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters []

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
- [] Other Non-wetland Waters MBR acres: []
- [] Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters 289.08 linear feet (ft), 3.36 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

- [] Office Concurs with data sheets/delineation report
- [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 310

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ______________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
<th>Name of nearest waterbody</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal County</td>
<td>N/A</td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
</tr>
</tbody>
</table>

Lat: 32.8482°N **Long:** -111.2599°W

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☒ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☒ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☒ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):

 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, Section III.B below.

1. TNW
 Identify TNW:
 Summarize rationale supporting determination:
 □ Vegetation

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland, its relationship to the tributary is a significant nexus evaluation.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49,650
 Drainage Area (sq mi): 0.02555
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ● Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):

Average Width (ft):

Average Depth (ft):

Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [X] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [X] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

- [] Other (list):

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []
- Mean high water mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of dowgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
- Wetlands adjacent to TNWs: Acres __________

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: __________ Width (Ft): __________ Acres: __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: [Blank Box]

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): [Blank Box] Acres: [Blank Box]

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters: [Blank Box]

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: [Blank Box] width (ft): [Blank Box]
- [] Other Non-wetland Waters MBR acres: [Blank Box]
- [] Wetlands MBR acres: [Blank Box]

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [X] Non-wetland waters 201.97 linear feet (ft), 3.05 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [X] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [X] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [X] US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 311</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED JURISDICTIONAL DETERMINATION FORM</td>
</tr>
<tr>
<td>U.S Army Cops of Engineers</td>
</tr>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey</td>
</tr>
<tr>
<td>Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
</tr>
<tr>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs</td>
</tr>
<tr>
<td>(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs</td>
</tr>
<tr>
<td>(Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
</tr>
<tr>
<td>File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
</tr>
</tbody>
</table>
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 312

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

✓ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

✓ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ ■ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

Watershed Size (sq mi): 49650
Drainage Area (sq mi): 0.00483
Average Annual Rainfall (in): 10
Average Annual Snowfall (in): 0

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW
☑ Tributary flows through _______ tributaries before entering TNW

Project waters are _______ river miles from TNW
<table>
<thead>
<tr>
<th>Feature ID: 312</th>
</tr>
</thead>
</table>

Project Waters
- Project waters are river Miles from tributary to RPW:
- Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
- Project waters are aerial (straight) miles from tributary to RPW:
- Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

- **Tributary is:** Natural Explain:

 Tributary properties with respect to top of bank (estimate):
 - Average Width (ft):
 - Average Depth (ft):
 - Average Side Slopes: 3:1

- **Primary tributary substrate composition (check all that apply):**
 - Silts
 - Sands
 - Concrete
 - Muck
 - Cobbles
 - Gravel
 - Substrate - Vegetation
 - Other, Explain:

- **Tributary Condition/Stability** [e.g., highly eroding, sloughing banks. Explain:]
 - Stable.

- **Presence of Run/Riffle/Pool Complexes. Explain:**
 - Not present.

- **Tributary Geometry:**
 - Relatively Straight

- **Tributary Gradient (approximate average slope):** 1%

(c) Flow

- **Tributary Provides for:** Ephemeral Flow
- **Estimate average number of flow events in review area/year:** 2-5
- **Describe Flow Regime:** Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No Explain:

- **Dye (or other) test performed:**

Tributary Has (Check all that apply):

- Bed and Banks
- **OHWM (check all the apply): OHWM Indicators:**
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

- **Discontinuous? Explain:**

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________
- Mean High water Mark indicated by: __________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________

Identify Specific Pollutants, if known: __________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________
- Wetland Fringe Characteristics: __________

Habitat for:

- Federally Listed Species Explain findings: __________
- Fish/Spawn Areas Explain findings: __________
- Other environmentally-sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: __________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________
- Wetland Type, Explain: __________
- Wetland Quality, Explain: __________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________ Explain: __________

Surface Flow is: __________

Characteristics: __________

Subsurface Flow: __________ Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: __________
- Ecological connection Explain: __________
- Separated by berm/barrier Explain: __________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________

Project Wetlands: Aerial Miles from TNW: __________

Flow is From: __________

Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: ___________________ Width (ft): ______ TNW Acres ______
 - [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ___________________
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ___________________.
 Provide estimates for jurisdictional waters in the review are (check all that apply):
 - [] Tributary waters Linear Feet: __________ Width (Ft): ______
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): __________ Width (feet): __________ Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ____________________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ____________________

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [x] Non-wetland waters 219.75 linear feet (ft), 3.45 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [x] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [x] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- [x] US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 312</th>
</tr>
</thead>
</table>

- **USDA Nat'l Res Conservation Service Soil Survey**: Citation:
- **National Wetlands Inventory Maps**: Cite Map Name:
- **State/Local Wetland Inventory Maps**:
- **FEMA/FIRM Maps**:
- **100-year Floodplain Elevation is**: (National Geodetic Vertical Datum of 1929)
 - **Aerial Photographs**: (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - **Other Photographs**: (Name and Date): Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations**: File No. and Date of Response Letter:
- **Applicable/Supporting Case Law**: Citation:
- **Applicable/Supporting Scientific Literature**: Citation:
 - Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 313

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
</table>

Center coordinates of site:

<table>
<thead>
<tr>
<th>Lat.</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.8482°N</td>
<td>-111.2599°W</td>
</tr>
</tbody>
</table>

Name of nearest waterbody:

Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):

15050100

- Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- [] Office (Desk) Determination. Date:
- [x] Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- [] Waters subject to the ebb and flow of the tide.
- [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWS that flow directly or indirectly into TNW:
 - [] Wetlands directly abutting RPWS that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWS that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWS that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters: Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 - [x] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only, if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW

Identify TNW:

☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.40262</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW

☑ Tributary flows through 4 tributaries before entering TNW

Project waters are 30 (or more) river miles from TNW
Feature ID: 313

Project waters are river Miles from tributary to RPW:
- 30 (or more)

Project waters are aerial (straight) miles from tributary to TNW:
-

Project waters are aerial (straight) miles from tributary to RPW:
-

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- sands
- Concrete
- Muck
- Cobble
- gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

<table>
<thead>
<tr>
<th>Bed and Banks</th>
<th>OHWM (check all the apply): OHWM Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Presence of litter and debris</td>
</tr>
<tr>
<td></td>
<td>Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td></td>
<td>Presence of wrack line</td>
</tr>
<tr>
<td></td>
<td>Sediment sorting</td>
</tr>
<tr>
<td></td>
<td>Scour</td>
</tr>
<tr>
<td></td>
<td>Multiple observed or predicted flow events</td>
</tr>
<tr>
<td></td>
<td>Abrupt change in plant community</td>
</tr>
</tbody>
</table>

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: □
- Mean High water Mark indicated by: □
- Oil or scum line along shore objects □
- Fine shell or debris deposits (foreshore) □
- Physical markings/characteristics □
- Tidal gauges □
- Other □

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: __

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __
- Wetland Fringe Characteristics: __

Habitat for:

- Federally Listed Species Explain findings: __
- Fish/Spawn Areas Explain findings: __
- Other environmentally sensitive species Explain findings: __
- Aquatic/Wildlife diversity Explain: __

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________
- Wetland Type, Explain: __
- Wetland Quality, Explain: __

Project Wetlands Cross or Serve as State Boundaries, Explain: __

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: __
- Surface Flow is: __

Characteristics: __

Subsurface Flow: __

Explain Findings: __

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __
 - Ecological connection Explain: __
 - Separated by berm/barrier Explain: __

(d) Proximity (Relationship) to TNW:

- Project Wetlands: River Miles from TNW: ____________
- Project Wetlands: Aerial Miles from TNW: ____________
- Flow is From: __

Estimate approximate Location of Wetland within Floodplain: __
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:

Habitat for:
- □ Federally Listed Species Explain:
- □ Fish/Spawn Areas Explain:
- □ Other environmentally-sensitive species Explain:
- □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 □ TNWs Linear Feet: Width (ft): TNW Acres
 □ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 □ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 □ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 □ Tributary waters Linear Feet: Width (ft).
 □ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 □ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters 991.99 linear feet (ft), 5.78 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 313</th>
</tr>
</thead>
</table>

Approved Jurisdictional Determination Form

U.S. Army Corps of Engineers

- **USDA Nat'l Res Conservation Service Soil Survey**
 - Citation:
- **National Wetlands Inventory Maps**
 - Cite Map Name:
- **State/Local Wetland Inventory Maps**
- **FEMA/FIRM Maps**
- **100-year Floodplain Elevation is:** (National Geodetic Vertical Datum of 1929)
 - **Aerial Photographs**
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - **Other Photographs**
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations**
 - File No. and Date of Response Letter:
- **Applicable/Supporting Case Law**
 - Citation:
- **Applicable/Supporting Scientific Literature**
 - Citation:
 - Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICATION DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 314

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.18566
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- ✔ Silts
- ☐ Sands
- ☐ Concrete
- ☐ Muck
- ☐ Gravel
- ☒ Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- ☐ Bed and Banks
- ☒ OHWM (check all the apply): OHWM Indicators:
 - ✔ Clear, natural line impressed on the bank
 - ✔ Changes in soil character
 - ☐ Shelving
 - ☐ Vegetation matted down, bent or absent
 - ☐ Leaf litter disturbed or washed away
 - ☐ Sediment deposition
 - ☐ Water staining
 - Other (list):
- ☐ Discontinuous?

Presence of litter and debris
Destruction of terrestrial vegetation
Presence of wrack line
Sediment sorting
Scour
Multiple observed or predicted flow events
Abrupt change in plant community
(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:

- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:

- Fish/Spawn Areas Explain findings:

- Other environmentally-sensitive species Explain findings:

- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):

- Wetland Type, Explain:

- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:

- Surface Flow is:

 Characteristics:

- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW

- Wetland Not Directly Abutting Non-TNW

 - Discrete wetland hydrologic connection Explain:

 - Ecological connection Explain:

 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______
 - [] Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: ______ Width (ft): ______
 - [] Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): __________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________

Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters: __________

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________
- Other Non-wetland Waters MBR acres: __________
- Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 834.23 linear feet (ft), 33.05 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 314

USDA Nat’l Res Conservation Service Soil Survey Citation:
National Wetlands Inventory Maps Cite Map Name:
State/Local Wetland Inventory Maps
FEMA/FIRM Maps:
100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
Previous Determinations File No. and Date of Response Letter:
Applicable/Supporting Case Law Citation:
Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:
Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 315
State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are Yes ☐ navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are Yes ☐ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: []
 - Vegetation: []

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.02058
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**
 - [] Tributary flows directly to TNW
 - [] Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
Other (list):
- [] Discontinuous? Explain:
- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community
Other (list):
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: __________
- [] Mean High water Mark indicated by: __________
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________

Identify Specific Pollutants, if known: __________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: __________
- [] Wetland Fringe Characteristics: __________

Habitat for:

- [] Federally Listed Species Explain findings: __________
- [] Fish/Spawn Areas Explain findings: __________
- [] Other environmentally-sensitive species Explain findings: __________
- [] Aquatic/Wildlife diversity Explain: __________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________
- Wetland Type, Explain: __________
- Wetland Quality, Explain: __________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________ Explain: __________

Surface Flow is: __________

Characteristics: __________

Subsurface Flow: __________ Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: __________

Ecological connection Explain: __________

Separated by berm/barrier Explain: __________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________

Project Wetlands: Aerial Miles from TNW: __________

Flow is From: __________

Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: Width (ft): TNW Acres
- Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 Provide estimates for jurisdictional waters in the review are (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): Linear feet: [] Width (ft): []
- [] Other Non-wetland Waters MBR Acres: []
- [] Wetlands MBR Acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters 240.25 linear feet (ft), 4.06 width (ft)
- [] Other waters Acres
- [] Wetlands Acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

[] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
[] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

[] Office Concurs with data sheets/delineation report
- [] Office Does Not Concur with data sheets/delineation report

[] Data Sheets Prepared by the Corps
[] Corps Navigable Water Study
[] US Geological Survey Hydrologic Atlas

- [] USGS NHD Data
- [] USGS 8 and 12 digit HUC Maps

[] US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 315</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat’l Res Conservation Service Soil Survey Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 316
 State: AZ County/Parish/borough: Pinal County
 City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a
different JD form.
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date: ____________________
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in
the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres: ____________________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered
 jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a
 significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 1.07033
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 Tributary flows directly to TNW

 Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 316

U.S Army Corps of Engineers

Project waters are: river Miles from tributary to RPW:
Project waters are: 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are: aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Bedrock
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Discontinuous? Explain:
316
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

[□] Mean high water mark indicated by:
- Survey to available datum
- Physical markings
- Vegetation lines changes in vegetation types

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:
Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW
(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:
Project Wetlands Cross or Serve as State Boundaries, Explain:
(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
- Characteristics:
- Subsurface Flow: Explain Findings:
(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:
(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- ☐ Riparian Buffer Characteristics (type, average width):
- ☐ Vegetation type/percent cover. Explain:

Habitat for:

- ☐ Federally Listed Species Explain:
- ☐ Fish/Spawn Areas Explain:
- ☐ Other environmentally-sensitive species Explain:
- ☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of aTNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
 - Linear Feet:
 - Width (ft):
 - TNW Acres
- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - Linear Feet:
 - Width (ft):
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 2158.08 linear feet (ft), 10.43 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Cops of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 316</th>
</tr>
</thead>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USDA Nat’l Res Conservation Service Soil Survey

Citation:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

National Wetlands Inventory Maps

Cite Map Name:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

State/Local Wetland Inventory Maps

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FEMA/FIRM Maps:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100-year Floodplain Elevation

(National Geodetic Vertical Datum of 1929)

Aerial Photographs

Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs

Name and Date: Ground Photos; June through July 2012, September through October 2012

Previous Determinations

File No. and Date of Response Letter:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applicable/Supporting Case Law

Citation:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applicable/Supporting Scientific Literature

Citation:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Information, Please Specify:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 317

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWS that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters [] Linear Feet [] Width (ft) and/or [] Acres
 Wetlands Acres: []

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01136
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through ____________ tributaries before entering TNW
 Project waters are ________ (or more) river miles from TNW
Feature ID: 317

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>30 (or more) aerial (straight) miles from tributary to TNW:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>aerial (straight) miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project waters cross or serve as state boundaries.</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identify flow route to TNW</th>
<th>Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.</th>
</tr>
</thead>
</table>

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary tributary substrate composition (check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Silts</td>
</tr>
<tr>
<td>☐ Sands</td>
</tr>
<tr>
<td>☐ Concrete</td>
</tr>
<tr>
<td>☐ Muck</td>
</tr>
<tr>
<td>☑ Cobbles</td>
</tr>
<tr>
<td>☐ Gravel</td>
</tr>
<tr>
<td>☑ Substrate - Vegetation</td>
</tr>
<tr>
<td>☐ Other, Explain:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Presence of Run/Riffle/Pool Complexes. Explain:</th>
<th>Not present.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary Geometry:</th>
<th>Relatively Straight</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary Gradient (approximate average slope):</th>
<th>1%</th>
</tr>
</thead>
</table>

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Estimate average number of flow events in review area/year:</th>
<th>2-5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Describe Flow Regime:</th>
<th>Ephemeral.</th>
</tr>
</thead>
</table>

| Other Information on Duration and Volume: |
|---|---|
| | |

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
<th>Discrete and Confined</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Subsurface Flow:</th>
<th>No</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>☐ Dye (or other) test performed:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Has (Check all that apply):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>☐ Bed and Banks</th>
</tr>
</thead>
</table>

| ☑ OHWM (check all the apply): OHWM Indicators: |

| Clear, natural line impressed on the bank |
| Changes in soil character |
| Shelving |
| Vegetation matted down, bent or absent |
| Leaf litter disturbed or washed away |
| Sediment deposition |
| Water staining |
| Presence of litter and debris |
| Destruction of terrestrial vegetation |
| Presence of wrack line |
| Sediment sorting |
| Scour |
| Multiple observed or predicted flow events |
| Abrupt change in plant community |

<table>
<thead>
<tr>
<th>Other (list):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>☐ Discontinuous?</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNW, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs (Linear Feet: Width (ft): TNW Acres:)
- Wetlands adjacent to TNWs (Acres:)

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters (Linear Feet: Width (Ft):)
 - Other non-wetland waters (Acres:)

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 317

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is:

(National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date):

Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date):

Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 318

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 Drainage Feature 318
 State: AZ County/Parish/borough: Pinal City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 □ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a
different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 □ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There □ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in
 the review area.
 □ Waters subject to the ebb and flow of the tide.
 □ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There □ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 □ TNWs (new)
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered
 jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a
 significant nexus with the downstream TNW.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________
 □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04622
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

b) General Tributary Characteristics

- Tributary is: Natural

- Tributary properties with respect to top of bank (estimate):
 - Average Width (ft):
 - Average Depth (ft):
 - Average Side Slopes: 3:1

- Primary tributary substrate composition (check all that apply):
 - Silts
 - Sands
 - Concrete
 - Muck
 - Cobbles
 - Gravel
 - Substrate - Vegetation
 - Other, Explain:

- Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

- Presence of Run/Riffle/Pool Complexes. Explain: Not present.

- Tributary Geometry: Relatively Straight

- Tributary Gradient (approximate average slope): 1%

c) Flow

- Tributary Provides for: Ephemeral Flow
- Estimate average number of flow events in review area/year: 2-5
- Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

- Surface Flow is: Discrete and Confined
- Characteristics:
- Subsurface Flow: No
- Explain:
- Dye (or other) test performed:

- Tributary Has (Check all that apply):
 - Bed and Banks
 - OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

- Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________________________

Identify Specific Pollutants, if known: __________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________________________
- Wetland Fringe Characteristics: __________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: __________________________
- Other environmentally -sensitive species Explain findings: __________________________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: __________________________
- Wetland Quality, Explain: __________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________________ Explain: __________________________

Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: Explain Findings: __________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: __________________________
- Ecological connection Explain: __________________________
- Separated by berm/barrier Explain: __________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________________

Project Wetlands: Aerial Miles from TNW: __________________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: __________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downsgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary waters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet):</th>
<th>Width (feet):</th>
<th>Acres:</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acrages for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acrages for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters _______ linear feet (ft), _______ width (ft)

☐ Other waters _______ acres

☐ Wetlands _______ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 318

USDA Nat'1 Res Conservation Service Soil Survey

Citation: []

National Wetlands Inventory Maps

Cite Map Name: []

State/Local Wetland Inventory Maps

[FEMA/FIRM Maps:

[] 100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)

[Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

[Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature
State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC):
15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain:
Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: [Blank]

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00220
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 [Blank] Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Estimate average number of flow events in review area/year: 2-5

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
Other (list):
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________ □ Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore): __________ □ Physical markings
- Tidal gauges __________ □ Vegetation lines/changes in vegetation types
- Other __________ □ Survey to available datum

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________

Identify Specific Pollutants, if known: __________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________
- Wetland Fringe Characteristics: __________

Habitat for:

- Federally Listed Species Explain findings: __________
- Fish/Spawn Areas Explain findings: __________
- Other environmentally-sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: __________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________
- Wetland Type, Explain: __________
- Wetland Quality, Explain: __________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: __________ Explain: __________
- Surface Flow is: __________
 - Characteristics: __________
 - Subsurface Flow: __________ Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________
 - Ecological connection Explain: __________
 - Separated by berm/barrier Explain: __________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________
Project Wetlands: Aerial Miles from TNW: __________
Flow is From: __________
Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/ Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs
 - Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 319

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _____ Acres: _____

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _____ width (ft): _____
☐ Other Non-wetland Waters MBR acres: _____
☐ Wetlands MBR acres: _____

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 114.52 linear feet (ft), 3.54 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 319

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 32

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There □ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There □ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ______________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02111
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:
Subsurface Flow: No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
Other (list):

- [] Discontinuous? Explain:

Other (list):

Presence of litter and debris
Destruction of terrestrial vegetation
Presence of wrack line
Sediment sorting
Scour
Multiple observed or predicted flow events
Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by:
- [] Mean High water Mark indicated by:
 - [] oil or scum line along shore objects
 - [] fine shell or debris deposits (foreshore)
 - [] physical markings/characteristics
 - [] tidal gauges
 - [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- [] Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics:
- [] Wetland Fringe Characteristics:

Habitat for:

- [] Federally Listed Species Explain findings:
- [] Fish/Spawn Areas Explain findings:
- [] Other environmentally sensitive species Explain findings:
- [] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

 Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - [] Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: __________ Width (Ft). Acres: __________
 - [] Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>32</th>
</tr>
</thead>
</table>

Approved Jurisdictional Determination Form

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Map Source</th>
<th>Citation</th>
<th>Map Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100-year Floodplain Elevation is: __________ (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs**
 - Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs**
 - Name and Date: Ground Photos; June through July 2012, September through October 2012

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Scientific Literature</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Information, Please Specify:

<table>
<thead>
<tr>
<th>Additional Comments to Support JD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 320

| State: AZ | County/Parish/borough: Pinal County | City: N/A |
| Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W |
| Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam |
| Name of watershed or Hydrologic Unit Code (HUC): 15050100 |

✓ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
✓ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands Acres:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

✓ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.09741
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 - ☑ Tributary flows directly to TNW
 - ☐ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation

Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Other (list):

- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ________________________ [] Mean High water Mark indicated by: ________________________
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ________________________

Identify Specific Pollutants, if known: ________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ________________________
- [] Wetland Fringe Characteristics: ________________________

Habitat for:

- [] Federally Listed Species Explain findings: ________________________
- [] Fish/Spawn Areas Explain findings: ________________________
- [] Other environmentally-sensitive species Explain findings: ________________________
- [] Aquatic/Wildlife diversity Explain: ________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ________________________
- Wetland Type, Explain: ________________________
- Wetland Quality, Explain: ________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ________________________ Explain: ________________________

Surface Flow is: ________________________

Characteristics: ________________________

Subsurface Flow: ________________________ Explain Findings: ________________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain: ________________________
- [] Ecological connection Explain: ________________________
- [] Separated by berm/barrier Explain: ________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ________________________

Project Wetlands: Aerial Miles from TNW: ________________________

Flow is From: ________________________

Estimate approximate Location of Wetland within Floodplain: ________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
- [] Wetlands adjacent to TNWs

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - [] Tributary waters
 - [] Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _____ Acres: _____

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _____ width (ft): _____
☐ Other Non-wetland Waters MBR acres: _____
☐ Wetlands MBR acres: _____

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 679.52 linear feet (ft), 3.83 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 320</th>
</tr>
</thead>
</table>

| USDA Nat'l Res Conservation Service Soil Survey | Citation: |
| National Wetlands Inventory Maps | Cite Map Name: |
| State/Local Wetland Inventory Maps |
| FEMA/FIRM Maps: |
| 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929) |

| Aerial Photographs | (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011 |
| Other Photographs | (Name and Date): Ground Photos; June through July 2012, September through October 2012 |

| Previous Determinations | File No. and Date of Response Letter: |

| Applicable/Supporting Case Law | Citation: |

| Applicable/Supporting Scientific Literature | Citation: |

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 33

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- [] Office (Desk) Determination. Date: []
- [✓] Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There [] "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- [] Waters subject to the ebb and flow of the tide.
- [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There [] "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters [] Linear Feet [] Width (ft) and/or [] Acres
 - Wetlands Acres: []

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 - [✓] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ___________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.06397</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW
☑ Tributary flows through ______ tributaries before entering TNW

Project waters are ______ river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobbles
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

 Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

 Discrete wetland hydrologic connection Explain:

 Ecological connection Explain:

 Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:

Habitat for:
- □ Federally Listed Species Explain:
- □ Fish/Spawn Areas Explain:
- □ Other environmentally-sensitive species Explain:
- □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (Ft).

☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report

- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas

- USGS NHD Data
- USGS 8 and 12 digit HUC Maps

- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 33</th>
</tr>
</thead>
</table>

U.S Army Corps of Engineers

- **USDA Nat'l Res Conservation Service Soil Survey**

- **National Wetlands Inventory Maps**

- **State/Local Wetland Inventory Maps**

- **FEMA/FIRM Maps**:

- **100-year Floodplain Elevation is**:

� **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

� **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations** File No. and Date of Response Letter:

- **Applicable/Supporting Case Law** Citation:

- **Applicable/Supporting Scientific Literature** Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 34

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWS that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________

☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, then it requires a significant nexus evaluation.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.01232</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 34

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain: Stable.

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

- Mean High water Mark indicated by: ____________________________
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally-sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): ____________________________
Wetland Type, Explain: ____________________________
Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________
Surface Flow is: ____________________________
Characteristics: ____________________________
Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ____________________________
- Ecological connection Explain: ____________________________
- Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________
Flow is From: ____________________________
Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): ___________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: ___________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: ___________

Length (linear feet): ___________

Acres: ___________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters ___________

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: ___________ width (ft): ___________
- Other Non-wetland Waters MBR acres: ___________
- Wetlands MBR acres: ___________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters: ___________ linear feet (ft), ___________ width (ft)
- Other waters: ___________ acres
- Wetlands: ___________ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 34

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
✓ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
✓ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 35

<table>
<thead>
<tr>
<th>State</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site:</td>
<td>Lat.</td>
<td>Long.</td>
<td>32.8482°N</td>
<td>-111.2599°W</td>
<td></td>
</tr>
</tbody>
</table>

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):
15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters: Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain:
Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW:
 [] Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

 This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

 The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

 A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

 If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

 1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01275
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 [] Tributary flows directly to TNW
 [] Tributary flows through [4] tributaries before entering TNW

 Project waters are [30 (or more)] river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
[] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community
 - [] Other (list):
- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other
- Mean High water Mark indicated by: __________
- Survey to available datum
- Physical markings
- Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:
- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally-sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

- Properties:
 - Wetland Size (ac): ____________________________
 - Wetland Type, Explain: ____________________________
 - Wetland Quality, Explain: ____________________________

- Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________________________
- Surface Flow is: ____________________________
 - Characteristics: ____________________________
 - Subsurface Flow: ____________________________, Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________________________
 - Ecological connection Explain: ____________________________
 - Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ____________________________
- Project Wetlands: Aerial Miles from TNW: ____________________________
- Flow is From: ____________________________
- Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely deterministic of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
Other Non-wetland Waters MBR acres:
Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

Non-wetland waters linear feet (ft), width (ft)
Other waters acres
Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

Office Concurs with data sheets/delineation report
Office Does Not Concur with data sheets/delineation report

Data Sheets Prepared by the Corps

Corps Navigable Water Study

US Geological Survey Hydrologic Atlas

USGS NHD Data

USGS 8 and 12 digit HUC Maps

US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature</th>
<th>ID: 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED JURISDICTIONAL DETERMINATION FORM</td>
<td>U.S Army Corps of Engineers</td>
</tr>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td>Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>☐ Aerial Photographs</td>
<td>(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>☐ Other Photographs</td>
<td>(Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
<td></td>
</tr>
</tbody>
</table>
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 36
State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There are no "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
a. Indicate presence of water of U.S. in review area (Check all the apply):
☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area
Non-Wetlands waters: Linear Feet Width (ft) and/or Acres
Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 Identify TNW:
 □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**

 (i) **General Area Conditions:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.00651</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 - □ Tributary flows directly to TNW
 - ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
 - [] Discontinuous? Explain:

[] Presence of litter and debris
[] Destruction of terrestrial vegetation
[] Presence of wrack line
[] Sediment sorting
[] Scour
[] Multiple observed or predicted flow events
[] Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ________________________
- [] Oil or scum line along shore objects
- [] Fine shell or debris deposits (foreshore)
- [] Physical markings/characteristics
- [] Tidal gauges
- [] Other

- [] Mean High water Mark indicated by: ________________________

- [] Survey to available datum
- [] Physical markings
- [] Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ________________________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ________________________
- [] Wetland Fringe Characteristics: ________________________

Habitat for:

- [] Federally Listed Species Explain findings: ________________________
- [] Fish/Spawn Areas Explain findings: ________________________
- [] Other environmentally sensitive species Explain findings: ________________________
- [] Aquatic/Wildlife diversity Explain: ________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ________________________
- Wetland Type, Explain: ________________________
- Wetland Quality, Explain: ________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ________________________ Explain: ________________________

Surface Flow is: ________________________

Characteristics: ________________________

Subsurface Flow: ________________________ Explain Findings: ________________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain: ________________________
- [] Ecological connection Explain: ________________________
- [] Separated by berm/barrier Explain: ________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ________________________

Project Wetlands: Aerial Miles from TNW: ________________________

Flow is From: ________________________

Estimate approximate Location of Wetland within Floodplain: ________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):

- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:

- [] Fish/Spawn Areas Explain:

- [] Other environmentally-sensitive species Explain:

- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: Width (ft): TNW Acres
- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet:
 width (ft):

- Other Non-wetland Waters MBR acres:

- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft),
 width (ft)

- Other waters acres

- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:
Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 37

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

<table>
<thead>
<tr>
<th>Name of nearest waterbody:</th>
<th>Gila River between Powers Butte and Gillespie Dam</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</th>
<th>Gila River between Powers Butte and Gillespie Dam</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name of watershed or Hydrologic Unit Code (HUC):</th>
<th>15050100</th>
</tr>
</thead>
</table>

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters [Linear Feet] Width (ft) and/or [Acres]
 - Wetlands Acres: []

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 - Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

A wetland that is adjacent to but that does not directly abut an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 1.02584
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 - ☑ Tributary flows directly to TNW
 - ☐ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobbles
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:

Subsurface Flow: No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ________________________
- [] Mean High water Mark indicated by: ________________________
- [] Oil or scum line along shore objects
- [] Fine shell or debris deposits (foreshore)
- [] Physical markings/characteristics
- [] Tidal gauges
- [] Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ________________________

Identify Specific Pollutants, if known: ________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ________________________
- [] Wetland Fringe Characteristics: ________________________

Habitat for:

- [] Federally Listed Species Explain findings: ________________________
- [] Fish/Spawn Areas Explain findings: ________________________
- [] Other environmentally sensitive species Explain findings: ________________________
- [] Aquatic/Wildlife diversity Explain: ________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ________________________
- Wetland Type, Explain: ________________________
- Wetland Quality, Explain: ________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ________________________ Explain: ________________________

Surface Flow is: ________________________ Explain: ________________________

Characteristics: ________________________

Subsurface Flow: ________________________ Explain Findings: ________________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ________________________
- Ecological connection Explain: ________________________
- Separated by berm/barrier Explain: ________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ________________________

Project Wetlands: Aerial Miles from TNW: ________________________

Flow is From: ________________________

Estimate approximate Location of Wetland within Floodplain: ________________________
(ii) Chemical Characteristics:
Charaterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.
Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
* Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
* Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
* Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
* Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 2056.27 linear feet, 51.69 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>37</th>
</tr>
</thead>
</table>

U.S Army Corps of Engineers

- [] USDA Nat'l Res Conservation Service Soil Survey
 Citation:

- [] National Wetlands Inventory Maps
 Cite Map Name:

- [] State/Local Wetland Inventory Maps

- [] FEMA/FIRM Maps:

- [] 100-year Floodplain Elevation is: ___________________________________ (National Geodetic Vertical Datum of 1929)

- [✓] Aerial Photographs
 (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- [✓] Other Photographs
 (Name and Date): Ground Photos; June through July 2012, September through October 2012

- [] Previous Determinations
 File No. and Date of Response Letter:

- [] Applicable/Supporting Case Law
 Citation:

- [] Applicable/Supporting Scientific Literature
 Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 38

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal County</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.08658
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>38</th>
</tr>
</thead>
</table>

Project waters are river

<table>
<thead>
<tr>
<th>Miles from tributary to RPW:</th>
</tr>
</thead>
</table>

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

<table>
<thead>
<tr>
<th>Miles from tributary to TNW:</th>
</tr>
</thead>
</table>

Project waters cross or serve as state boundaries. Explain:

<table>
<thead>
<tr>
<th>Identify flow route to TNW</th>
</tr>
</thead>
</table>

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
</tr>
</tbody>
</table>

Explain:

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes:</td>
</tr>
</tbody>
</table>

3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

<table>
<thead>
<tr>
<th>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presence of Run/Riffle/Pool Complexes. Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not present.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Geometry:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatively Straight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Gradient (approximate average slope):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
</tr>
</tbody>
</table>

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephemeral Flow</td>
</tr>
</tbody>
</table>

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:

Discrete and Confined Characteristics:

<table>
<thead>
<tr>
<th>Subsurface Flow:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

Explain:

<table>
<thead>
<tr>
<th>Dye (or other) test performed:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary Has (Check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed and Banks</td>
</tr>
<tr>
<td>[] OHWM (check all the apply): OHWM Indicators:</td>
</tr>
<tr>
<td>Clear, natural line impressed on the bank</td>
</tr>
<tr>
<td>Changes in soil character</td>
</tr>
<tr>
<td>Shelving</td>
</tr>
<tr>
<td>Vegetation matted down, bent or absent</td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
</tr>
<tr>
<td>Sediment deposition</td>
</tr>
<tr>
<td>Water staining</td>
</tr>
<tr>
<td>Presence of litter and debris</td>
</tr>
<tr>
<td>Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>Presence of wrack line</td>
</tr>
<tr>
<td>Sediment sorting</td>
</tr>
<tr>
<td>Scour</td>
</tr>
<tr>
<td>Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>Abrupt change in plant community</td>
</tr>
</tbody>
</table>

Other (list):

<table>
<thead>
<tr>
<th>Discontinuous?</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
</tr>
</tbody>
</table>

Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by: ____________________
- Mean High water Mark indicated by: ____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: ____________________

Identify Specific Pollutants, if known: ____________________

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics: ____________________
- Wetland Fringe Characteristics: ____________________

Habitat for:
- Federally Listed Species Explain findings: ____________________
- Fish/Spawn Areas Explain findings: ____________________
- Other environmentally-sensitive species Explain findings: ____________________
- Aquatic/Wildlife diversity Explain: ____________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): ____________________
- Wetland Type, Explain: ____________________
- Wetland Quality, Explain: ____________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________ Explain: ____________________

Surface Flow is: ____________________

Characteristics: ____________________

Subsurface Flow: ____________________ Explain Findings: ____________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________________
 - Ecological connection Explain: ____________________
 - Separated by berm/barrier Explain: ____________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________

Project Wetlands: Aerial Miles from TNW: ____________________

Flow is From: ____________________

Estimate approximate Location of Wetland within Floodplain: ____________________
(ii) Chemical Characteristics:
Charaterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wetlands adjacent to TNWs:</th>
<th>Acres:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
☐ Other Non-wetland Waters MBR acres: []
☐ Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☒ Non-wetland waters linear feet (ft), 1777.09 width (ft), 14.81 acres
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☒ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

Feature ID: 38

☐ USDA Nat’l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ___________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 39
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICATION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICATION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 □ TNWs (new)
 □ Wetlands adjacent to TNWs
 □ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 □ Non-RPWs that flow directly or indirectly into TNWs
 □ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 □ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 □ Impoundments of jurisdictional waters
 □ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters __________ Linear Feet
 Width (ft) and/or __________ Acres
 Wetlands Acres: __________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: _______________________
 □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 46.18638 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Bedrock
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks

☐ OHWM (check all the apply): OHWM Indicators:
- Clear, natural line impressed on the bank
- Changes in soil character
- Shelving
- Vegetation matted down, bent or absent
- Leaf litter disturbed or washed away
- Sediment deposition
- Water staining
- Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ______________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ______________________
- Wetland Fringe Characteristics: _______________________

Habitat for:

- Federally Listed Species Explain findings: ______________
- Fish/Spawn Areas Explain findings: _____________________
- Other environmentally -sensitive species Explain findings: ______________
- Aquatic/Wildlife diversity Explain: _____________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: _______________________
- Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________

Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ______________________
 - Ecological connection Explain: ______________________
 - Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ______________________

Project Wetlands: Aerial Miles from TNW: ______________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ______________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?: size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Wetlands adjacent to TNWs

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional wetlands.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______________ Acres: ______________

F. NON‐JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______________ width (ft): ______________
☐ Other Non-wetland Waters MBR acres: ______________
☐ Wetlands MBR acres: ______________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters acres: ______________ linear feet (ft), 1805.60 width (ft) 24.16
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature</th>
<th>ID: 39</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S Army Cops of Engineers</td>
<td></td>
</tr>
</tbody>
</table>

- [] USDA Nat’l Res Conservation Service Soil Survey
 Citation:

- [] National Wetlands Inventory Maps
 Cite Map Name:

- [] State/Local Wetland Inventory Maps

- [] FEMA/FIRM Maps:

- [] 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

- [✓] Aerial Photographs
 (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- [✓] Other Photographs
 (Name and Date): Ground Photos; June through July 2012, September through October 2012

- [] Previous Determinations
 File No. and Date of Response Letter:

- [] Applicable/Supporting Case Law
 Citation:

- [] Applicable/Supporting Scientific Literature
 Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 4

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.10474
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):
- [x] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [x] Substrate - Vegetation
- Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed: []

Tributary Has (Check all that apply):
- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [] Shoving
 - [x] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ______________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings: ____________________
- Fish/Spawn Areas Explain findings: ________________________
- Other environmentally sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: __________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): __________________________
- Wetland Type, Explain: _________________________
- Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: ____________________________
- Surface Flow is: _____________________________
- Characteristics: _____________________________
- Subsurface Flow: ____________________________
- Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ______________________
 - Ecological connection Explain: ______________________
 - Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW: __________________
- Project Wetlands: Aerial Miles from TNW: __________________
- Flow is From: ______________________________________
- Estimate approximate Location of Wetland within Floodplain: __________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

□ Riparian Buffer Characteristics (type, average width):
□ Vegetation type/percent cover. Explain:

Habitat for:

□ Federally Listed Species Explain:

□ Fish/Spawn Areas Explain:

□ Other environmentally-sensitive species Explain:

□ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: ___________________ Width (ft): _______ TNW Acres _______
 - Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ___________________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ___________________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: _______ Width (Ft): _______ Acres: _______
 - Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ___________________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ___________________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 4

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
 ☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 ☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:
Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 40

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.10472
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - (ii) Physical Characteristics:
 - ☐ Tributary flows directly to TNW
 - ✅ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sand
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all that apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
- Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by:
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

- [] Mean High water Mark indicated by:
- [] survey to available datum
- [] physical markings
- [] vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- [] Riparian Corridor Characteristics:
- [] Wetland Fringe Characteristics:
Habitat for:
- [] Federally Listed Species Explain findings:
- [] Fish/Spawn Areas Explain findings:
- [] Other environmentally -sensitive species Explain findings:
- [] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
 Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW
 - [] Discrete wetland hydrologic connection Explain:
 - [] Ecological connection Explain:
 - [] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical, and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: Width (ft): TNW Acres
- Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft):
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat’l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 41
 State: AZ County/Parish/borough: Pinal City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICATION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICATION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.07461
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through ☻ tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 41

Project waters are
- river Miles from tributary to RPW:
- Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
- Project waters are aerial (straight) miles from tributary to RPW:
- Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for: Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate average number of flow events in review area/year: 2-5</td>
</tr>
</tbody>
</table>

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW:

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):

- [] Vegetation type/percent cover. Explain:

Habitat for:

- [] Federally Listed Species Explain:

- [] Fish/Spawn Areas Explain:

- [] Other environmentally-sensitive species Explain:

- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non-wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
- [] Other Non-wetland Waters MBR acres: ______
- [] Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [x] Non-wetland waters 1326.98 linear feet, 10.12 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [x] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [x] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- [x] US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 41</th>
</tr>
</thead>
</table>

1. **USDA Nat'l Res Conservation Service Soil Survey**
 - Citation:
 - Cite Map Name:

2. **National Wetlands Inventory Maps**
 - Cite Map Name:

3. **State/Local Wetland Inventory Maps**
4. **FEMA/FIRM Maps**

5. **100-year Floodplain Elevation is:**
 - (National Geodetic Vertical Datum of 1929)

6. **Aerial Photographs**
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

7. **Other Photographs**
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

8. **Previous Determinations**
 - File No. and Date of Response Letter:

9. **Applicable/Supporting Case Law**
 - Citation:

10. **Applicable/Supporting Scientific Literature**
 - Citation:
 - Other Information, Please Specify:

Additional Comments to Support JD:

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 42

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site: Lat. 32.8482°N</td>
<td>Long. -111.2599°W</td>
<td></td>
</tr>
<tr>
<td>Name of nearest waterbody:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC): 15050100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - [] Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.01273
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**
 (a) **Relationship with TNW**
 - [] Tributary flows directly to TNW
 - [✓] Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Presence of litter and debris
- Destruction of terrestrial vegetation
- Presence of wrack line
- Sediment sorting
- Scour
- Multiple observed or predicted flow events
- Abrupt change in plant community

Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:

- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:
Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: _______ Width (ft): _______ TNW Acres _______
 - [] Wetlands adjacent to TNWs: Acres: _______

2. **RPWs that flow directly or indirectly into TNWs**
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: _______ Width (Ft): _______ Acres: _______
 - [] Other non-wetland waters: Acres: _______

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: __________________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________________

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters __________________

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______

☐ Other Non-wetland Waters MBR acres: _______

☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 676.70 linear feet (ft), 4.46 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 42

☐ USDA Nat’l Res Conservation Service Soil Survey
 Citation:

☐ National Wetlands Inventory Maps
 Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
 (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs
 (Name and Date):

☐ Previous Determinations
 File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law
 Citation:

☐ Applicable/Supporting Scientific Literature
 Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 43

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:

☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary adjacent to wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for all onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.07426
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: AP43

Project waters are river Miles from tributary to RPW:

<table>
<thead>
<tr>
<th>Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 (or more)</td>
</tr>
</tbody>
</table>

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

<table>
<thead>
<tr>
<th>Aerial (straight) miles from tributary to TNW:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Project waters are aerial (straight) miles from tributary to RPW:

<table>
<thead>
<tr>
<th>Aerial (straight) miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Project waters cross or serve as state boundaries. Explain:

<table>
<thead>
<tr>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

<table>
<thead>
<tr>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

(b) General Tributary Characteristics

Tributary is: Natural

<table>
<thead>
<tr>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Average Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Depth (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Side Slopes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [X] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

<table>
<thead>
<tr>
<th>Other, Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain:] Stable.

<table>
<thead>
<tr>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable.</td>
</tr>
</tbody>
</table>

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

<table>
<thead>
<tr>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not present.</td>
</tr>
</tbody>
</table>

**Tributary Geometry: ** Relatively Straight

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Tributary Gradient (approximate average slope): 1%

| 1% |

(c) Flow

Tributary Provides for: Ephemeral Flow

<table>
<thead>
<tr>
<th>Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Estimate average number of flow events in review area/year: 2-5

<table>
<thead>
<tr>
<th>2-5</th>
</tr>
</thead>
</table>

Describe Flow Regime: Ephemeral.

<table>
<thead>
<tr>
<th>Ephemeral.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Other Information on Duration and Volume:

<table>
<thead>
<tr>
<th>Other Information on Duration and Volume:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Surface Flow is: Discrete and Confined

<table>
<thead>
<tr>
<th>Characteristics:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Subsurface Flow: No

<table>
<thead>
<tr>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dye (or other) test performed:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tributary Has (Check all that apply):

- [] Bed and Banks
- [X] OHWM (check all the apply): OHWM Indicators:
 - [X] Clear, natural line impressed on the bank
 - [X] Changes in soil character
 - [X] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

<table>
<thead>
<tr>
<th>Other (list):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- [] Discontinuous?

<table>
<thead>
<tr>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Presence of litter and debris

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Destruction of terrestrial vegetation

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Presence of wrack line

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Sediment sorting

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Scour

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Multiple observed or predicted flow events

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Abrupt change in plant community

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Dye (or other) test performed:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Other (list):

<table>
<thead>
<tr>
<th>Other (list):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Describe Flow Regime: Ephemeral.
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ______________________
- Oil or scum line along shore objects ______________________
- Fine shell or debris deposits (foreshore) _________________
- Physical markings/characteristics _________________________
- Tidal gauges _________________
- Other ___

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___

Identify Specific Pollutants, if known: ________________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ________________________________
- Wetland Fringe Characteristics: _________________________________

Habitat for:

- Federally Listed Species Explain findings: __________________________
- Fish/Spawn Areas Explain findings: _________________________________
- Other environmentally-sensitive species Explain findings: ___________
- Aquatic/Wildlife diversity Explain: _________________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________
- Wetland Type, Explain: __________________
- Wetland Quality, Explain: __________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________ Explain: __________________

Surface Flow is: __________________

Characteristics: __________________

Subsurface Flow: __________________ Explain Findings: __________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __________________
 - Ecological connection Explain: __________________
 - Separated by berm/barrier Explain: __________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________

Project Wetlands: Aerial Miles from TNW: __________________

Flow is From: __________________

Estimate approximate Location of Wetland within Floodplain: __________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer
- Vegetation
- Habitat for:
 - Federally Listed Species
 - Fish/Spawn Areas
 - Other environmentally-sensitive species
 - Aquatic/Wildlife Diversity

Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 717.40 linear feet (ft), 4.80 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 43

USDA Nat'I Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ________________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 44

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 1.47836
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain: Stable.

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for: Ephemeral Flow</th>
</tr>
</thead>
</table>

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by: ______________________________________
- Mean High water Mark indicated by: ________________
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __
Identify Specific Pollutants, if known:
__

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics: _________________________________
- Wetland Fringe Characteristics: _________________________________
Habitat for:
- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ________________________________
- Other environmentally -sensitive species Explain findings: ____________
- Aquatic/Wildlife diversity Explain: _________________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
 - Wetland Size (ac): ______________________________
 - Wetland Type, Explain: ____________________________
 - Wetland Quality, Explain: __________________________
Project Wetlands Cross or Serve as State Boundaries, Explain: ________________

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: ________________ Explain: __________________________
Surface Flow is: ________________
 - Characteristics: ___
Subsurface Flow: ______________________ Explain Findings: ____________

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________________
 - Ecological connection Explain: _________________________________
 - Separated by berm/barrier Explain: ______________________________

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW: _____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________
Flow is From: ___
Estimate approximate Location of Wetland within Floodplain: ______________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer
 - Characteristics (type, average width):
 - Habitat for:
 - Federally Listed Species
 - Fish/Spawn Areas
 - Other environmentally-sensitive species
 - Aquatic/Wildlife Diversity

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: ________________________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: ________________________
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters: ________________________

Explain finding of no Significant Nexus: See Section III C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
- Other Non-wetland Waters MBR acres: _______
- Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 1755.74 linear feet (ft), 8.79 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 44</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>APPROVED JURISDICTIONAL DETERMINATION FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S Army Corps of Engineers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Citation:</th>
<th>Cite Map Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FEMA/FIRM Maps:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Map Name:</th>
<th>100-year Floodplain Elevation is:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerial Photographs (Name and Date):</th>
<th>Other Photographs (Name and Date):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous Determinations File No. and Date of Response Letter:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Scientific Literature Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Information, Please Specify:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional Comments to Support JD:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

<table>
<thead>
<tr>
<th>Drainage Feature</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>State:</td>
<td>AZ</td>
</tr>
<tr>
<td>County/Parish/borough:</td>
<td>Pinal County</td>
</tr>
<tr>
<td>City:</td>
<td>N/A</td>
</tr>
<tr>
<td>Center coordinates of site:</td>
<td>Lat. 32.8482°N, Long. -111.2599°W</td>
</tr>
<tr>
<td>Name of nearest waterbody:</td>
<td></td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC):</td>
<td></td>
</tr>
</tbody>
</table>

- **Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request**
- **Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.**

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

- Waters subject to the ebb and flow of the tide.
- Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 - a. Indicate presence of water of U.S. in review area (Check all the apply):
 - TNWs (new)
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 - b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters
 - Linear Feet
 - Width (ft) and/or
 - Acres
 - Wetlands Acres
 - c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

- Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: []
 - Vegetation []
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - **(i) General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.13651
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - **(ii) Physical Characteristics:**
 - **(a) Relationship with TNW**
 - Tributary flows directly to TNW []
 - Tributary flows through []
 - Tributaries before entering TNW []
 - Project waters are [] river miles from TNW []

2. Characteristics of wetlands adjacent to TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
- Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
- Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________ ✗
- Mean High water Mark indicated by: ____________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________

Identify Specific Pollutants, if known: ____________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________
- Wetland Fringe Characteristics: ____________

Habitat for:

- Federally Listed Species Explain findings: ____________
- Fish/Spawn Areas Explain findings: ____________
- Other environmentally-sensitive species Explain findings: ____________
- Aquatic/Wildlife diversity Explain: ____________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): ____________
- Wetland Type, Explain: ____________
- Wetland Quality, Explain: ____________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: ____________ Explain: ____________
Surface Flow is: ____________
Characteristics: ____________
Subsurface Flow: ____________ Explain Findings: ____________

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________
 - Ecological connection Explain: ____________
 - Separated by berm/barrier Explain: ____________

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW: ____________
Project Wetlands: Aerial Miles from TNW: ____________
Flow is From: ____________
Estimate approximate Location of Wetland within Floodplain: ____________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

- [] All wetland(s) being considered in cumulative analysis:

- [] Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
- Width: __________
- TNW Acres: __________
- [] Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - Linear Feet: __________
 - Width (Ft.): __________
 - [] Other non-wetland waters:
 - Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________
 - Width (feet): __________
 - Acres: __________________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON‐JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non‐Jurisdictional Waters

Provide acreage estimates for non‐jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland‐Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non‐wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non‐jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non‐wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5‐Minute Quadrangles
Feature ID: 45

☐ USDA Nat'l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ___________________________ (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 46

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N, Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction as defined by 33 CFR part 328 in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW

 Identify TNW:
 □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a TNW that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.17965
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 46

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:</td>
<td>Explain:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
<td>Explain:</td>
</tr>
<tr>
<td>Project waters cross</td>
<td>as state boundaries. Explain:</td>
<td></td>
</tr>
<tr>
<td>Identify flow route to TNW</td>
<td>Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.</td>
<td></td>
</tr>
</tbody>
</table>

(b) **General Tributary Characteristics**

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary properties with respect to top of bank (estimate):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft):</td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft):</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary tributary substrate composition (check all that apply):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Silts</td>
<td>Sands</td>
</tr>
<tr>
<td>Cobble</td>
<td>Gravel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:</th>
<th>Stable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain:</td>
<td>Not present.</td>
</tr>
<tr>
<td>Tributary Geometry:</td>
<td>Relatively Straight</td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope):</td>
<td>1%</td>
</tr>
</tbody>
</table>

(c) **Flow:**

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate average number of flow events in review area/year:</td>
<td>2-5</td>
<td></td>
</tr>
<tr>
<td>Describe Flow Regime:</td>
<td>Ephemeral.</td>
<td></td>
</tr>
<tr>
<td>Other Information on Duration and Volume:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
<th>Discrete and Confined</th>
<th>Characteristics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsurface Flow:</td>
<td>No</td>
<td>Explain:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dye (or other) test performed:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributary Has (Check all that apply):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed and Banks</td>
<td></td>
</tr>
<tr>
<td>□ OHWM (check all the apply): OHWM Indicators:</td>
<td></td>
</tr>
<tr>
<td>□ Clear, natural line impressed on the bank</td>
<td>Presence of litter and debris</td>
</tr>
<tr>
<td>□ Changes in soil character</td>
<td></td>
</tr>
<tr>
<td>□ Shelving</td>
<td>Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>□ Vegetation matted down, bent or absent</td>
<td>Presence of wrack line</td>
</tr>
<tr>
<td>□ Leaf litter disturbed or washed away</td>
<td>Sediment sorting</td>
</tr>
<tr>
<td>□ Sediment deposition</td>
<td>Scour</td>
</tr>
<tr>
<td>□ Water staining</td>
<td>Multiple observed or predicted flow events</td>
</tr>
<tr>
<td></td>
<td>Abrupt change in plant community</td>
</tr>
<tr>
<td>Other (list):</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>□ Discontinuous?</th>
<th>Explain:</th>
</tr>
</thead>
</table>
(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

Habitat for:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

Wetland Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

Wetland Not Directly Abutting Non-TNW

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.):

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

- All wetland(s) being considered in cumulative analysis:
- Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: __________ Width (ft): __________ TNW Acres: __________
- Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: __________ Width (ft): __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

7. Impoundments of jurisdictional waters.

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
- Other Non-wetland Waters MBR acres: ______
- Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), 1613.74 10.30 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 46

USDA Nat'l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ___________________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 Drainage Feature 47
 State: AZ
 County/Parish/borough: Pinal
 City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☐ Office (Desk) Determination. Date:
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres
 Wetlands Acres: _______
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04962
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 47

APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

Project waters are [] river
Miles from tributary to RPW: ______________

Project waters are [] 30 (or more) aerial (straight) miles from tributary to RPW: ______________

Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW: ______________

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft): ______________
- Average Depth (ft): ______________
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain: ______________

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume: ______________

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed: ______________

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list): ______________

Discontinuous? Explain: ______________
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

- Mean High water Mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally-sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: []

Explain: []

Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?: size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
- [] Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

Provide estimates for jurisdictional waters in the review area (check all that apply):

- [] Tributary waters Linear Feet: __________ Width (Ft): __________ Acres: __________
- [] Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 47</th>
</tr>
</thead>
</table>

USDA Nat’l Res Conservation Service Soil Survey	Citation:	
National Wetlands Inventory Maps	Cite Map Name:	
State/Local Wetland Inventory Maps		
FEMA/FIRM Maps:		
100-year Floodplain Elevation is:	(National Geodetic Vertical Datum of 1929)	
Yes	Aerial Photographs	(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
Yes	Other Photographs	(Name and Date): Ground Photos; June through July 2012, September through October 2012
	Previous Determinations	File No. and Date of Response Letter:
	Applicable/Supporting Case Law	Citation:
	Applicable/Supporting Scientific Literature	Citation:
	Other Information, Please Specify:	

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 48
 State: AZ
 County/Parish/borough: Pinal
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 City: N/A
 Name of nearest waterbody:
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
 Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters __________ Linear Feet __________ Width (ft) and/or __________ Acres
 Wetlands Acres: __________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: ______________________
 - □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. **Characteristics of non-TNWs that flow directly or indirectly into TNW**

 (i) **General Area Conditions:**

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.03069 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 - □ Tributary flows directly to TNW
 - ✔ Tributary flows through ___ tributaries before entering TNW
 - Project waters are ___ (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts []
- Sands []
- Concrete []
- Muck []
- Cobbles []
- Gravel []
- Substrate - Vegetation []
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank []
 - Changes in soil character []
 - Shelving []
 - Vegetation matted down, bent or absent []
 - Leaf litter disturbed or washed away []
 - Sediment deposition []
 - Water staining []
 - Presence of litter and debris []
 - Destruction of terrestrial vegetation []
 - Presence of wrack line []
 - Sediment sorting []
 - Scour []
 - Multiple observed or predicted flow events []
 - Abrupt change in plant community []
 - Other (list):

- Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain:
- Surface Flow is:
- Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

- All wetland(s) being considered in cumulative analysis:
- Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs
- Wetlands adjacent to TNWs

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 - Provide acreage estimates for jurisdictional wetland in the review area:
 - Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 - Provide acreage estimates for jurisdictional wetland in the review area:
 - Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 48</th>
</tr>
</thead>
</table>

- **USDA Nat’l Res Conservation Service Soil Survey**
 - Citation:
 - Cite Map Name:

- **National Wetlands Inventory Maps**
 - Cite Map Name:

- **State/Local Wetland Inventory Maps**

- **FEMA/FIRM Maps**
 - 100-year Floodplain Elevation is: ___________________________ (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs**
 - Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs**
 - Name and Date: Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 - File No. and Date of Response Letter:

- **Applicable/Supporting Case Law**
 - Citation:

- **Applicable/Supporting Scientific Literature**
 - Citation:
 - Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature
State: AZ
County/Parish/borough: Pinal
City: N/A
Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g, offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: [Blank]
 - ☐ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.85095
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

- Mean High water Mark indicated by: []
- survey to available datum []
- physical markings []
- vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally-sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: []

Surface Flow is: []

- Characteristics: []

Subsurface Flow: Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []

Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: Width (ft): TNW Acres
 - [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (Ft). Acres:
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 3465.45 linear feet, 11.50 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES
A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Feature ID: 49

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 5

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No navigable waters of the U.S. within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No waters of the U.S. within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or</th>
<th>Acres</th>
</tr>
</thead>
</table>

Wetlands Acres:

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___
 □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.02046
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through ___ tributaries before entering TNW
 Project waters are ___ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernable past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

| Tributary is: Natural | Explain: |
Tributary properties with respect to top of bank (estimate):
| Average Width (ft): |
| Average Depth (ft): |
| Average Side Slopes: 3:1 |
Primary tributary substrate composition (check all that apply):
Silts	☑	Sand	☐	Concrete	☐	Muck	☐
☑	Cobble						
☐	Bed Rock						
☑	Substrate - Vegetation						
Other, Explain:							
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

| Tributary Provides for: Ephemeral Flow |
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
☑	Bed and Banks
☑	OHWM (check all the apply): OHWM Indicators:
☑	Clear, natural line impressed on the bank
☑	Changes in soil character
☑	Shelving
☑	Vegetation matted down, bent or absent
☑	Leaf litter disturbed or washed away
☑	Sediment deposition
☑	Water staining
☑	Presence of litter and debris
	Destruction of terrestrial vegetation
	Presence of wrack line
	Sediment sorting
	Scour
	Multiple observed or predicted flow events
	Abrupt change in plant community
Other (list):	
☐	Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __
- Mean High water Mark indicated by: __________________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ___________________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___________________________________
- Wetland Fringe Characteristics: _______________________________________

Habitat for:

- Federally Listed Species Explain findings: ________________________________
- Fish/Spawn Areas Explain findings: _____________________________________
- Other environmentally-sensitive species Explain findings: _________________
- Aquatic/Wildlife diversity Explain: _______________________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ___
- Wetland Type, Explain: __
- Wetland Quality, Explain: ___

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ___
- Explain: __
- Surface Flow is: ___
- Characteristics: ___
- Subsurface Flow: ___
- Explain Findings: __

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: _________________________
- Ecological connection Explain: _______________________________________
- Separated by berm/barrier Explain: _____________________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: _________________________________
Project Wetlands: Aerial Miles from TNW: _________________________________
Flow is From: __
Estimate approximate Location of Wetland within Floodplain: ________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetlands being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdicational waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON‐JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC.2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet, width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 5

USDA Nat'l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: []

Aerial Photographs (Name and Date): []

Other Photographs (Name and Date): []

Previous Determinations
File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 50
State: AZ
County/Parish/borough: Pinal
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 ☐ Other
 ☐ Not applicable
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting the

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 1.45863
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✓ Tributary flows through ___ 4 ___ tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary is</td>
<td>Natural</td>
<td></td>
</tr>
<tr>
<td>Average Width (ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes</td>
<td>3:1</td>
<td></td>
</tr>
<tr>
<td>Primary tributary substrate composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate - Vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, Explain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributary Condition/Stability</td>
<td>Stable</td>
<td></td>
</tr>
<tr>
<td>Presence of Run/Riffle/Pool Complexes</td>
<td>Not present.</td>
<td></td>
</tr>
<tr>
<td>Tributary Geometry</td>
<td>Relatively Straight</td>
<td></td>
</tr>
<tr>
<td>Tributary Gradient</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

(c) Flow

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary Provides for</td>
<td>Ephemeral</td>
<td></td>
</tr>
<tr>
<td>Estimate average number of flow events in review area/year</td>
<td>2-5</td>
<td></td>
</tr>
<tr>
<td>Describe Flow Regime</td>
<td>Ephemeral</td>
<td></td>
</tr>
<tr>
<td>Other Information on Duration and Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Flow is</td>
<td>Discrete and Confined</td>
<td>Characteristics:</td>
</tr>
<tr>
<td>Subsurface Flow</td>
<td>No</td>
<td>Explain:</td>
</tr>
<tr>
<td>Dye (or other) test performed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributary Has (Check all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bed and Banks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OHWM (check all the apply)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear, natural line impressed on the bank</td>
<td></td>
<td>Presence of litter and debris</td>
</tr>
<tr>
<td>Changes in soil character</td>
<td></td>
<td>Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>Shelving</td>
<td></td>
<td>Presence of wrack line</td>
</tr>
<tr>
<td>Vegetation matted down, bent or absent</td>
<td></td>
<td>Sediment sorting</td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
<td></td>
<td>Scour</td>
</tr>
<tr>
<td>Sediment deposition</td>
<td></td>
<td>Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>Water staining</td>
<td></td>
<td>Abrupt change in plant community</td>
</tr>
<tr>
<td>Other (list):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discontinuous?</td>
<td></td>
<td>Explain:</td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: _____________________________
- Mean High water Mark indicated by: _____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: _____________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ______________________
- Wetland Fringe Characteristics: _________________________

Habitat for:

- Federally Listed Species Explain findings: ________________
- Fish/Spawn Areas Explain findings: ______________________
- Other environmentally -sensitive species Explain findings: ______________________
- Aquatic/Wildlife diversity Explain: ________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

- Properties:
 - Wetland Size (ac): _____________________________
 - Wetland Type, Explain: ________________________
 - Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: _____________________________
- Surface Flow is: _____________________________

Characteristics: _____________________________

Subsurface Flow: _____________________________

Explain Findings: _____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: _____________________________
 - Ecological connection Explain: _____________________________
 - Separated by berm/barrier Explain: _____________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: _____________________________
- Project Wetlands: Aerial Miles from TNW: _____________________________

Flow is From: __

Estimate approximate Location of Wetland within Floodplain: _____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs
- Wetlands adjacent to TNWs

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Other non-wetland waters

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: 50

APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres): __________

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: __________

Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters __________

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________

☐ Other Non-wetland Waters MBR acres: __________

☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), __________ width (ft) __________

☐ Other waters acres __________

☐ Wetlands acres __________

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 50

☐ USDA Nat'l Res Conservation Service Soil Survey
 Citation:

☐ National Wetlands Inventory Maps
 Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs
 (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs
 (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
 File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law
 Citation:

☐ Applicable/Supporting Scientific Literature
 Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 51
State: AZ
County/Parish/borough: Pinal
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a
different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in
the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review
area.
1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW:
 □ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.32143
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✓ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
[] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
Other (list):

[] Discontinuous? Explain:

Dye (or other) test performed:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

- Mean High water Mark indicated by:
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:

- Ecological connection Explain:

- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: ___________ Width (ft): ___________ TNW Acres ___________
 - Wetlands adjacent to TNWs: Acres: ___________

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ___________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ___________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ___________ Width (Ft): ___________
 - Other non-wetland waters: Acres: ___________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ___________ Width (feet): ___________ Acres: ___________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ___________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ___________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): [___] Acres: [___]

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non-wetland-Waters (i.e., rivers, streams): linear feet: [___] width (ft): [___]
- [] Other Non-wetland Waters MBR acres: [___]
- [] Wetlands MBR acres: [___]

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [x] Non-wetland waters 549.80 linear feet (ft), 8.59 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [x] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [x] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

- [] Office Concurs with data sheets/delineation report
- [] Office Does Not Concur with data sheets/delineation report

- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [x] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
USDA Nat’l Res Conservation Service Soil Survey

National Wetlands Inventory Maps

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 52

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a
different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in
the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered
jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a
significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.05703
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters cross or serve as state boundaries.

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain: Stable.

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow:
- No
- Dye (or other) test performed: Explain: Discontinuous?

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

Mean High water Mark indicated by:
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:
- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs
 - Linear Feet:
 - Width (ft):
 - TNW Acres
- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - Linear Feet:
 - Width (Ft):
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: __________ width (ft): __________
☐ Other Non-wetland Waters MBR acres: __________
☐ Wetlands MBR acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 261.52 linear feet (ft), 5.97 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTON IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 52

USDA Nat'l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs
(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs
(Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations
File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 53

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ___________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.02198</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

□ Tributary flows directly to TNW

☑ Tributary flows through ________ tributaries before entering TNW

Project waters are ________ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

- Mean High water Mark indicated by: []
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: [] Explain []
- Surface Flow is: []

- Characteristics: []
- Subsurface Flow: [] Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []
Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of the TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 619.08 linear feet (ft), 8.18 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 53

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 54

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: []
 - Vegetation: []

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.01781
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW
 - [] Tributary flows directly to TNW
 - [X] Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by:
- [] Mean High water Mark indicated by:
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics:
- [] Wetland Fringe Characteristics:

Habitat for:

- [] Federally Listed Species Explain findings:
- [] Fish/Spawn Areas Explain findings:
- [] Other environmentally-sensitive species Explain findings:
- [] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristic (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of dowgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
 - [] Wetlands adjacent to TNWs: [] Acres: []

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: [] Width (Ft).
 - [] Other non-wetland waters: [] Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: [] Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: [] Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
□ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

□ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
□ Other Non-wetland Waters MBR acres:
□ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters
☑ Other waters
☑ Wetlands

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☒ US Geological Survey Map(s) Scale and Quad Name:
Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 55

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 1.02952
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - (ii) Physical Characteristics:
 - ☑ Tributary flows directly to TNW
 - ☐ Tributary flows through ☐ tributaries before entering TNW
 - Project waters are ☐ 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 55

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Cobble
- Bedrock
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
- Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Other (list):

- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Surface Flow is:
- Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(iii) **Chemical Characteristics:**

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) **Biological Characteristics. Wetland supports (check all that apply):**

- [] Riparian Buffer Characteristics (type, average width): ____________
- [] Vegetation type/percent cover. Explain: ____________

Habitat for:

- [] Federally Listed Species Explain: ____________
- [] Fish/Spawn Areas Explain: ____________
- [] Other environmentally-sensitive species Explain: ____________
- [] Aquatic/Wildlife Diversity Explain: ____________

3. **Characteristics of all wetlands adjacent to the tributary (if any)**

All wetland(s) being considered in cumulative analysis: ____________

Wetland acres in total being considered in cumulative analysis: ____________

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: The above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft):
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 744.92 linear feet (ft), 11.17 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 55</th>
</tr>
</thead>
</table>

| **USDA Nat’l Res Conservation Service Soil Survey** |
| **Citation:** |
| **National Wetlands Inventory Maps** |
| **Cite Map Name:** |
| **State/Local Wetland Inventory Maps** |
| **FEMA/FIRM Maps:** |
| **100-year Floodplain Elevation is:** (National Geodetic Vertical Datum of 1929) |
| **Aerial Photographs** |
| **(Name and Date):** Aerials Express Phoenix 2009, BING Aerial Imagery 2011 |
| **Other Photographs** |
| **(Name and Date):** Ground Photos; June through July 2012, September through October 2012 |
| **Previous Determinations** |
| **File No. and Date of Response Letter:** |
| **Applicable/Supporting Case Law** |
| **Citation:** |
| **Applicable/Supporting Scientific Literature** |
| **Citation:** |

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: [] Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.19705
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 [] Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are [] river Miles from tributary to RPW:
Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are [] aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

Average Width (ft):	
Average Depth (ft):	
Average Side Slopes:	3:1

Primary tributary substrate composition (check all that apply):

- [] Siils
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain: |

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics: |

Subsurface Flow: No Explain: |

Dye (or other) test performed: |

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list): |
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Discontinuous? Explain: |
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ___________________________
- Mean High water Mark indicated by: ______________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___________________________

Identify Specific Pollutants, if known: ___________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___________________________
- Wetland Fringe Characteristics: ___________________________

Habitat for:

- Federally Listed Species Explain findings: ___________________________
- Fish/Spawn Areas Explain findings: ___________________________
- Other environmentally -sensitive species Explain findings: ___________________________
- Aquatic/Wildlife diversity Explain: ___________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ___________________________
- Wetland Type, Explain: ___________________________
- Wetland Quality, Explain: ___________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ___________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ___________________________
- Surface Flow is: ___________________________

Characteristics: ___________________________

Subsurface Flow: ___________________________

Explain Findings: ___________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ___________________________
- Ecological connection Explain: ___________________________
- Separated by berm/barrier Explain: ___________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ___________________________

Project Wetlands: Aerial Miles from TNW: ___________________________

Flow is From: ___________________________

Estimate approximate Location of Wetland within Floodplain: ___________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th></th>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
</tr>
</tbody>
</table>

Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th></th>
<th>Tributary waters</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Other non-wetland waters:</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

| | Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. |

Provide estimates of jurisdictional waters within the review area (check all that apply):

| Length (Linear Feet): | Width (feet): | Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th></th>
<th>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

| | Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW |

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| | Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. |

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
□ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

□ Non-wetland-Waters (i.e., rivers, streams): linear feet : width (ft):
□ Other Non-wetland Waters MBR acres:
□ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

✓ Non-wetland waters linear feet (ft), width (ft)
□ Other waters acres
□ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

✓ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
✓ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 □ Office Concurs with data sheets/delineation report
 □ Office Does Not Concur with data sheets/delineation report
□ Data Sheets Prepared by the Corps
□ Corps Navigable Water Study
□ US Geological Survey Hydrologic Atlas
 □ USGS NHD Data
 □ USGS 8 and 12 digit HUC Maps
✓ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 56

USDA Nat'l Res Conservation Service Soil Survey
Citation: []

National Wetlands Inventory Maps
Cite Map Name: []

State/Local Wetland Inventory Maps
[]

FEMA/FIRM Maps: []

100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 57

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: __
 - □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) **General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.26716
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 (ii) **Physical Characteristics:**
 (a) **Relationship with TNW**
 - □ Tributary flows directly to TNW
 - ✔ Tributary flows through ______ tributaries before entering TNW
 - Project waters are ______ river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

| Average Width (ft): |
| Average Depth (ft): |
| Average Side Slopes: | 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

c) Flow:

Tributary Provides for: Ephemeral Flow
Describe Flow Regime: Ephemeral.
Estimate average number of flow events in review area/year: 2-5
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined
Subsurface Flow: No
Dye (or other) test performed:
Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
- Other (list):
- [] Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - TNWs
 - Linear Feet: ______ Width (ft): ______TNW Acres ______
 - Wetlands adjacent to TNWs: Acres: ______

2. **RPWs that flow directly or indirectly into TNWs**

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ______ Width (ft): ______ Acres: ______
 - Other non-wetland waters: Acres: ______

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 57

☐ USDA Nat’l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

<table>
<thead>
<tr>
<th>Drainage Feature</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>State:</td>
<td>AZ</td>
</tr>
<tr>
<td>County/Parish/borough:</td>
<td>Pinal County</td>
</tr>
<tr>
<td>Center coordinates of site:</td>
<td>Lat. 32.8482°N, Long. -111.2599°W</td>
</tr>
<tr>
<td>City:</td>
<td>N/A</td>
</tr>
<tr>
<td>Name of nearest waterbody:</td>
<td>Gila River between Powers Butte and Gillespie Dam</td>
</tr>
<tr>
<td>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</td>
<td></td>
</tr>
<tr>
<td>Name of watershed or Hydrologic Unit Code (HUC):</td>
<td>15050100</td>
</tr>
</tbody>
</table>

- [] Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- [] Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There [] "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- [] Waters subject to the ebb and flow of the tide.
- [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There [] "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters: Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

- [] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:
☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.11942
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [x] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [x] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):
- [] Discontinuous? Explain:

Presence of litter and debris

Destruction of terrestrial vegetation

Presence of wrack line

Sediment sorting

Scour

Multiple observed or predicted flow events

Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Surface Flow is:

Characteristics:

Subsurface Flow:

Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNW, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: Width (ft): TNW Acres
- Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concur with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 58

☐ USDA Nat'l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 59
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ___________________________ ☐ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

 This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

 The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

 If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.18700 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 59

U.S. Army Corps of Engineers

Project waters are

river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are

aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):

Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation

Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pooll Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

- Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Other (list):

- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:____________________
- Mean High water Mark indicated by:____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:____________________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:____________________
- Wetland Fringe Characteristics:____________________

Habitat for:

- Federally Listed Species Explain findings:____________________
- Fish/Spawn Areas Explain findings:____________________
- Other environmentally -sensitive species Explain findings:____________________
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):____________________
- Wetland Type, Explain:____________________
- Wetland Quality, Explain:____________________

Project Wetlands Cross or Serve as State Boundaries, Explain:____________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:____________________ Explain:____________________
- Surface Flow is:____________________
 Characteristics:____________________
- Subsurface Flow:____________________ Explain Findings:____________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:____________________
 - Ecological connection Explain:____________________
 - Separated by berm/barrier Explain:____________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:____________________
- Project Wetlands: Aerial Miles from TNW:____________________
- Flow is From:____________________
- Estimate approximate Location of Wetland within Floodplain:____________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: _______ Width (ft): _______ TNW Acres _______

☐ Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: _______ Width (ft): _______ Acres: _______

☐ Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 593.30 linear feet, 7.99 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
<td></td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
<td></td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
<td></td>
</tr>
<tr>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
<td></td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law</td>
<td>Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 6

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)

☐ Wetlands adjacent to TNWs

☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

☐ Non-RPWs that flow directly or indirectly into TNWs

☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

☐ Impoundments of jurisdictional waters

☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters [] Linear Feet Width (ft) and/or [] Acres

Wetlands Acres: []

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ___________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.04821</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

- □ Tributary flows directly to TNW
- □ Tributary flows through _____ tributaries before entering TNW
- Project waters are _____ river miles from TNW

(b) Other characteristics

Other considerations include:

- [] Adjacent wetlands
- [] Adjacent waterbody
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

Feature ID: 6

Project waters are

<table>
<thead>
<tr>
<th>river Miles from tributary to RPW:</th>
<th></th>
</tr>
</thead>
</table>

Project waters are

<table>
<thead>
<tr>
<th>30 (or more)</th>
<th>aerial (straight) miles from tributary to TNW:</th>
</tr>
</thead>
</table>

Project waters are

<table>
<thead>
<tr>
<th></th>
<th>aerial (straight) miles from tributary to RPW:</th>
</tr>
</thead>
</table>

Project waters cross or serve as state boundaries.

Identify flow route to TNW

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain: |

Tributary Condition/Stability

[] [] Stable.

Presence of Run/Riffle/Pool Complexes.

[] [] Not present.

Tributary Geometry:

- Relatively Straight

Tributary Gradient (approximate average slope):

1%

(c) Flow:

Tributary Provides for:

- Ephemeral Flow

Estimate average number of flow events in review area/year:

2-5

Describe Flow Regime:

- Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:

- Discrete and Confined

Subsurface Flow:

[] [] No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous?

[] [] Explain: |
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: □
- Mean High water Mark indicated by: □
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings_characteristics
 - tidal gauges
 - other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally sensitive species Explain findings:
- Aquatic_Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of polluants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Wetlands adjacent to TNWs:</th>
<th>Acres:</th>
</tr>
</thead>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</th>
</tr>
</thead>
</table>

Provide estimates for jurisdictional waters in the review area (check all that apply):

<table>
<thead>
<tr>
<th>Tributary waters</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Other non-wetland waters:</th>
<th>Acres:</th>
</tr>
</thead>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Length (Linear Feet):</th>
<th>Width (feet):</th>
<th>Acres:</th>
</tr>
</thead>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:</th>
</tr>
</thead>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Acres:</th>
</tr>
</thead>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
☐ Other Non-wetland Waters MBR acres: []
☐ Wetlands MBR acres: []

Produce acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☒ Non-wetland waters 2477.86 linear feet (ft), 4.21 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps

☒ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 6

☐ USDA Nat'l Res Conservation Service Soil Survey
Citation:

☐ National Wetlands Inventory Maps
Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is:
(National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date):
Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date):
Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 60

State: AZ County/Parish/borough: Pinal County City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatice resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________________________

☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 9.27540
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☑ Tributary flows through TNW

 Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

Mean High water Mark indicated by:

Survey to available datum: []
Physical markings: []
Vegetation lines/changes in vegetation types: []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.
Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet:
 - Width (ft):
 - TNW Acres:
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Linear Feet:
 - Width (Ft):
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (Feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
□ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

□ Non-wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
□ Other Non-wetland Waters MBR acres: _______
□ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 2015.72 linear feet (ft), 21.27 width (ft)
□ Other waters acres
□ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 □ Office Concurs with data sheets/delineation report
 □ Office Does Not Concur with data sheets/delineation report
□ Data Sheets Prepared by the Corps
□ Corps Navigable Water Study
□ US Geological Survey Hydrologic Atlas
 □ USGS NHD Data
 □ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 60</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Citation Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td></td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 61

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWS that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW:
 □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictio. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 26.06156 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 □ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 61

U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pooll Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- Physical Characteristics:
 - Oil or scum line along shore objects
 - Fine shell or debris deposits (foreshore)
 - Physical markings/characteristics
 - Tidal gauges
 - Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known:

[]

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within foot of a floodplain is not sole determinant of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: Width (ft): TNW Acres
- Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______

☐ Other Non-wetland Waters MBR acres: ______

☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters acres: 1964.05 linear feet (ft), 27.07 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
USDA Nat’l Res Conservation Service Soil Survey
National Wetlands Inventory Maps
State/Local Wetland Inventory Maps
FEMA/FIRM Maps:

100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

<table>
<thead>
<tr>
<th>Feature ID: 62</th>
</tr>
</thead>
</table>

| Date: | July 5, 2013 |

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

| Name: | Los Angeles District, File No. Pending |

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 62

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>County/Parish/borough:</td>
<td>Pinal County</td>
</tr>
<tr>
<td>City:</td>
<td>N/A</td>
</tr>
<tr>
<td>Center coordinates of site:</td>
<td>Lat. 32.8482°N, Long. -111.2599°W</td>
</tr>
</tbody>
</table>

Name of nearest waterbody:	Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:	
Name of watershed or Hydrologic Unit Code (HUC):	15050100

☑️ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **No** "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **No** "Waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. **Waters of the U.S.**

 a. **Indicate presence of water of U.S. in review area (Check all the apply):**

 ☐ TNWs (new)

 ☐ Wetlands adjacent to TNWs

 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

 ☐ Non-RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

 ☐ Impoundments of jurisdictional waters

 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. **Identify (estimate) size of waters of the U.S. in the review area**

<table>
<thead>
<tr>
<th>Non-Wetlands waters</th>
<th>Linear Feet</th>
<th>Width (ft) and/or Acres</th>
</tr>
</thead>
</table>

 Wetlands Acres:

 c. **Limits (boundaries) of Jurisdiction based on:**

 2. **Non-Regulated Waters/Wetlands (check if applicable):**

 ☑️ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: [] Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01351
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 [] Tributary flows directly to TNW
 [x] Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 62

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

[] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community

Other (list):

[] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __________________________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: _______________________
- Wetland Fringe Characteristics: _________________________

Habitat for:

- Federally Listed Species Explain findings: _______________________
- Fish/Spawn Areas Explain findings: _________________________
- Other environmentally-sensitive species Explain findings: _______________________
- Aquatic/Wildlife diversity Explain: _______________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): _______________________
- Wetland Type, Explain: _______________________
- Wetland Quality, Explain: _______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: _______________________

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: Explain: _______________________
- Surface Flow is: _______________________
 Characteristics: _______________________
 Subsurface Flow: Explain Findings: _______________________

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: _______________________
 - Ecological connection Explain: _______________________
 - Separated by berm/barrier Explain: _______________________

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW: _______________________
- Project Wetlands: Aerial Miles from TNW: _______________________
- Flow is From: _______________________
- Estimate approximate Location of Wetland within Floodplain: _______________________

Highlight line indicated by: _______________________
Mean High water Mark indicated by: _______________________
Oil or scum line along shore objects
Fine shell or debris deposits (foreshore)
Physical markings/characteristics
Tidal gauges
Other

(iii) Chemical Characteristics:

-characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
-explain: _______________________

-identify specific pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- riparian corridor characteristics: _______________________
- wetland fringe characteristics: _______________________

-habitat for:
- federally listed species explain findings: _______________________
- fish/spawn areas explain findings: _______________________
- other environmentally-sensitive species explain findings: _______________________
- aquatic/wildlife diversity explain: _______________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
-properties:
- wetland size (ac): _______________________
- wetland type, explain: _______________________
- wetland quality, explain: _______________________

-project wetlands cross or serve as state boundaries, explain: _______________________

(b) General Flow Relationship with Non-TNW:
- wetland flow is: explain: _______________________
- surface flow is: _______________________
 characteristics: _______________________
 subsurface flow: explain findings: _______________________

(c) Wetland Adjacency Determination with Non-TNW:
- wetland directly abutting non-TNW
- wetland not directly abutting non-TNW
 - discrete wetland hydrologic connection explain: _______________________
 - ecological connection explain: _______________________
 - separated by berm/barrier explain: _______________________

(d) Proximity (Relationship) to TNW
- project wetlands: river miles from TNW: _______________________
- project wetlands: aerial miles from TNW: _______________________
- flow is from: _______________________
- estimate approximate location of wetland within floodplain: _______________________

Highlight line indicated by: _______________________
Mean High water Mark indicated by: _______________________
Oil or scum line along shore objects
Fine shell or debris deposits (foreshore)
Physical markings/characteristics
Tidal gauges
Other
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Line Feet:</th>
<th>Width (ft):</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributary waters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Length (Linear Feet):</th>
<th>Width (feet):</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:</td>
<td></td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW</td>
<td></td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.</td>
<td></td>
</tr>
</tbody>
</table>

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet, width (ft)
- Other waters acres
- Wetlands acres

SECTON IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☐ USDA Nat’l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ___________________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 63

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Los Angeles River

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.03261
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Bedrock
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Poll Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ____________________________
- [] Mean High water Mark indicated by: ____________________________
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known:

__

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: __
- [] Wetland Fringe Characteristics: __

Habitat for:

- [] Federally Listed Species Explain findings: __
- [] Fish/Spawn Areas Explain findings: __
- [] Other environmentally-sensitive species Explain findings: __
- [] Aquatic/Wildlife diversity Explain: __

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) **General Wetland Characteristics**

Properties:

<table>
<thead>
<tr>
<th>Wetland Size (ac):</th>
<th>__</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Type, Explain:</td>
<td>__</td>
</tr>
<tr>
<td>Wetland Quality, Explain:</td>
<td>__</td>
</tr>
</tbody>
</table>

Project Wetlands Cross or Serve as State Boundaries, Explain: __

(b) **General Flow Relationship with Non-TNW:**

- Wetland Flow is: __
- Explain: __

- Surface Flow is: __

 - Characteristics: __

- Subsurface Flow: __

 - Explain Findings: __

(c) **Wetland Adjacency Determination with Non-TNW:**

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

 - Discrete wetland hydrologic connection Explain: __

 - Ecological connection Explain: __

 - Separated by berm/barrier Explain: __

(d) **Proximity (Relationship) to TNW**

- Project Wetlands: River Miles from TNW: __
- Project Wetlands: Aerial Miles from TNW: __

- Flow is From: __

- Estimate approximate Location of Wetland within Floodplain: __
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer
- Vegetation

Characteristics (type, average width):

Habitat for:

- Federally Listed Species
- Fish/Spawn Areas
- Other environmentally-sensitive species
- Aquatic/Wildlife Diversity

Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: Width (ft): TNW Acres
 - [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review are (check all that apply):
 - [] Tributary waters Linear Feet: Width (Ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : width (ft): Acres:
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☒ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☒ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 63</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ USDA Nat'l Res Conservation Service Soil Survey</td>
<td>Citation:</td>
</tr>
<tr>
<td>☐ National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>☐ State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>☐ FEMA/FIRM Maps</td>
<td></td>
</tr>
<tr>
<td>☐ 100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>☑ Aerial Photographs</td>
<td>(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>☑ Other Photographs</td>
<td>(Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>☐ Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>☐ Applicable/Supporting Case Law</td>
<td>Citation:</td>
</tr>
<tr>
<td>☐ Applicable/Supporting Scientific Literature</td>
<td>Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 64

- State: AZ
- County/Parish/borough: Pinal County
- City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain:
 Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00076
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 64

U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
 Average Width (ft):
 Average Depth (ft):
 Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
 ☑ Silts ☑ Sands ☑ Concrete ☑ Muck
 ☑ Cobbles ☑ Gravel ☑ Substrate - Vegetation
 Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

☐ Bed and Banks
☐ OHWM (check all the apply): OHWM Indicators:
 ☑ Clear, natural line impressed on the bank
 ☑ Changes in soil character
 ☑ Shelving
 ☑ Vegetation matted down, bent or absent
 ☑ Leaf litter disturbed or washed away
 ☑ Sediment deposition
 ☑ Water staining
 Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Wetland Type</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **RPWs that flow directly or indirectly into TNWs**

<table>
<thead>
<tr>
<th>Tributary Type</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provide estimates for jurisdictional waters in the review area (check all that apply):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributary waters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other non-wetland waters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. **Non-RPWs that flow directly or indirectly into TNWs.**

Provide estimates of jurisdictional waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th>Length (Linear Feet)</th>
<th>Width (feet)</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
- Other Non-wetland Waters MBR acres: []
- Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 35.42 linear feet (ft), 1.88 width (ft) acres
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 64</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>APPROVED JURISDICTIONAL DETERMINATION FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S Army Cops of Engineers</td>
</tr>
</tbody>
</table>

- [] USDA Nat’l Res Conservation Service Soil Survey
 Citation: []

- [] National Wetlands Inventory Maps
 Cite Map Name: []

- [] State/Local Wetland Inventory Maps

- [] FEMA/FIRM Maps:

- [] 100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)

- [x] Aerial Photographs
 (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- [x] Other Photographs
 (Name and Date): Ground Photos; June through July 2012, September through October 2012

- [] Previous Determinations
 File No. and Date of Response Letter: []

- [] Applicable/Supporting Case Law
 Citation: []

- [] Applicable/Supporting Scientific Literature
 Citation: []

 Other Information, Please Specify: []

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 65

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site:
Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___________ Linear Feet ___________ Width (ft) and/or ___________ Acres
 Wetlands Acres: ___________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS
A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.00088
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - (ii) Physical Characteristics:
 - □ Tributary flows directly to TNW
 - □ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:
Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain:
Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
Other (list):
- Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________
Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally-sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________
Surface Flow is: ____________________________
Characteristics: ____________________________
Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________________________
 - Ecological connection Explain: ____________________________
 - Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________
Flow is From: ____________________________
Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):

- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:

- Fish/Spawn Areas Explain:

- Other environmentally-sensitive species Explain:

- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
Approved Jurisdictional Determination Form
U.S Army Corps of Engineers

Does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. Determinations of Jurisdictional Findings. The Subject Waters/Wetlands Are (Check All That Apply)

1. TNWs and Adjacent Wetlands

<table>
<thead>
<tr>
<th>Item</th>
<th>Linear Feet</th>
<th>Width (ft)</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):
- Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): □

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction: □

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale: □
Length (linear feet): □ Acres: □

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters □

Explain finding of no Significant Nexus: □ See Section III C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: □ width (ft): □
☐ Other Non-wetland Waters MBR acres: □
☐ Wetlands MBR acres: □

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), □ 55.20 width (ft) □ 3.06 Acres: □
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
□ USDA Nat’l Res Conservation Service Soil Survey
□ National Wetlands Inventory Maps
□ State/Local Wetland Inventory Maps
□ FEMA/FIRM Maps:
□ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
□ Previous Determinations File No. and Date of Response Letter:
□ Applicable/Supporting Case Law Citation:
□ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 66
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ____________

☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04663
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 66

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries.

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes:

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

[] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

Other (list):

[] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: []
Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []
Habitat for:
- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally -sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []
Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:
- Wetland Flow is: [] Explain: []
- Surface Flow is: []
Characteristics: []
Subsurface Flow: [] Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:
- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW
- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []
 Flow is From: []
Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:
This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: [] Width (ft): [] TNW Acres []
 - Wetlands adjacent to TNWs: [] Acres: []

2. **RPWs that flow directly or indirectly into TNWs**

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - Tributary waters Linear Feet: [] Width (Ft): [] Acres: []
 - Other non-wetland waters: [] Acres: []

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 - Length (Linear Feet): [] Width (feet): [] Acres: []

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []

 Provide acreage estimates for jurisdictional wetland in the review area: [] Acres: []

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdicalional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: [] Acres: []

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 66

- USDA Nat'l Res Conservation Service Soil Survey
 Citation: [Sidebar: Additional Comments]

- National Wetlands Inventory Maps
 Cite Map Name: [Sidebar: Additional Comments]

- State/Local Wetland Inventory Maps

- FEMA/FIRM Maps

- 100-year Floodplain Elevation is: [Sidebar: Additional Comments]

- Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

- Previous Determinations File No. and Date of Response Letter:

- Applicable/Supporting Case Law Citation:

- Applicable/Supporting Scientific Literature Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:
SECTON I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 67

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)

 ☐ Wetlands adjacent to TNWs

 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

 ☐ Non-RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

 ☐ Impoundments of jurisdictional waters

 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.10408
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ___________
- Mean High water Mark indicated by: ___________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___________

Identify Specific Pollutants, if known: ___________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___________
- Wetland Fringe Characteristics: ___________

Habitat for:

- Federally Listed Species Explain findings: ___________
- Fish/Spawn Areas Explain findings: ___________
- Other environmentally-sensitive species Explain findings: ___________
- Aquatic/Wildlife diversity Explain: ___________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ___________
- Wetland Type, Explain: ___________
- Wetland Quality, Explain: ___________

Project Wetlands Cross or Serve as State Boundaries, Explain: ___________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ___________ Explain: ___________

Surface Flow is: ___________

Characteristics: ___________

Subsurface Flow: ___________ Explain Findings: ___________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: ___________

Ecological connection Explain: ___________

Separated by berm/barrier Explain: ___________

(d) Proximity (Relationship) to TNW:

Project Wetlands: River Miles from TNW: ___________

Project Wetlands: Aerial Miles from TNW: ___________

Flow is From: ___________

Estimate approximate Location of Wetland within Floodplain: ___________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
 Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:
This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

	Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:		
	Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:		
	Provide estimates for jurisdictional waters in the review area (check all that apply):		
	Tributary waters	Linear Feet:	Width (Ft):
	Other non-wetland waters:	Acres:	

3. Non-RPWs that flow directly or indirectly into TNWs.

| | Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. | Provide estimates of jurisdictional waters within the review area (check all that apply): |
| | Length (Linear Feet): | Width (feet): | Acres: |

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

	Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
	Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
	Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
	Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

| | Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Provide estimates for jurisdictional wetland in the review area (in acres):

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non-wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters 711.27 linear feet, 4.97 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 67</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td>Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
<td></td>
</tr>
</tbody>
</table>
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 68

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a TNW that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00462
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- ☑ Silts
- ☑ Bedrock
- ☑ Gravel
- ☑ Substrate - Vegetation
- ☑ Sands
- ☑ Concrete
- ☑ Muck
- ☑ Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/P ool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
- ☐ Bed and Banks
- ☑ OHWM (check all the apply): OHWM Indicators:
 - ☑ Clear, natural line impressed on the bank
 - ☑ Changes in soil character
 - ☑ Shelving
 - ☑ Vegetation matted down, bent or absent
 - ☑ Leaf litter disturbed or washed away
 - ☑ Sediment deposition
 - ☑ Water staining
 - ☑ Presence of litter and debris
 - ☑ Destruction of terrestrial vegetation
 - ☑ Presence of wrack line
 - ☑ Sediment sorting
 - ☑ Scour
 - ☑ Multiple observed or predicted flow events
 - ☑ Abrupt change in plant community
- ☐ Other (list):
- ☐ Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ___________________________
- Mean High water Mark indicated by: ___________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: ___________________________

Identify Specific Pollutants, if known: ___________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___________________________
- Wetland Fringe Characteristics: ___________________________

Habitat for:

- Federally Listed Species Explain findings: ___________________________
- Fish/Spawn Areas Explain findings: ___________________________
- Other environmentally-sensitive species Explain findings: ___________________________
- Aquatic/Wildlife diversity Explain: ___________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ___________________________
- Wetland Type, Explain: ___________________________
- Wetland Quality, Explain: ___________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ___________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ___________________________ Explain: ___________________________
- Surface Flow is: ___________________________

Characteristics: ___________________________

Subsurface Flow: ___________________________ Explain Findings: ___________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: ___________________________
- Ecological connection Explain: ___________________________
- Separated by berm/barrier Explain: ___________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ___________________________
- Project Wetlands: Aerial Miles from TNW: ___________________________

Flow is From: ___________________________

Estimate approximate Location of Wetland within Floodplain: ___________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: Width (ft): TNW Acres
- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review are (check all that apply):
 - [] Tributary waters Linear Feet: Width (ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

- [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM U.S Army Corps of Engineers

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 68

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is:

(National Geodetic Vertical Datum of 1929)

Aerial Photographs

(Name and Date):

Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs

(Name and Date):

Ground Photos; June through July 2012, September through October 2012

Previous Determinations

File No. and Date of Response Letter:

Applicable/Supporting Case Law

Citation:

Applicable/Supporting Scientific Literature

Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 69
 State: AZ County/Parish/borough: Pinal County City: N/A
 Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
 Name of watershed or Hydrologic Unit Code (HUC): 15050100
 Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ○ Office (Desk) Determination. Date:
 ✔ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICATION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ○ Waters subject to the ebb and flow of the tide.
 ○ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ○ TNWs (new)
 ○ Wetlands adjacent to TNWs
 ○ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ○ Non-RPWs that flow directly or indirectly into TNWs
 ○ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ○ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ○ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ○ Impoundments of jurisdictional waters
 ○ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ✔ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 2.32580
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is: Explain:
- Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Charaterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: ___ Width (ft): ___ TNW Acres: ___
 - Wetlands adjacent to TNWs: Acres: ___

2. RPWs that flow directly or indirectly into TNWs:
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ___
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ___
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: Linear Feet: ___ Width (ft): ___
 - Other non-wetland waters: Acres: ___

3. Non-RPWs that flow directly or indirectly into TNWs:
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): ___ Width (feet): ___ Acres: ___

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs:
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ___
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ___
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
6. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet:
-width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 1177.02 linear feet, 8.25 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 69</th>
</tr>
</thead>
</table>

- **USDA Nat’l Res Conservation Service Soil Survey**
Citation: []
- **National Wetlands Inventory Maps**
Cite Map Name: []
- **State/Local Wetland Inventory Maps**
- **FEMA/FIRM Maps**
- **100-year Floodplain Elevation is:** (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations**
File No. and Date of Response Letter: []
- **Applicable/Supporting Case Law**
Citation: []
- **Applicable/Supporting Scientific Literature**
Citation: []
 - Other Information, Please Specify: []

- **Additional Comments to Support JD:** []
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 7

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are ☑ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are ☑ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___________ Linear Feet Width (ft) and/or ___________ Acres
 Wetlands Acres: ___________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1 only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.07220
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✓ Tributary flows through _____ tributaries before entering TNW
 □ Project waters are ______ (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

Project waters are __________ river Miles from tributary to RPW:

Project waters are __________ aerial (straight) miles from tributary to TNW:

Project waters are __________ aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. **Explain:**

Identify flow route to TNW

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural **Explain:**

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, **Explain:**

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. **Explain:** Stable.

Presence of Run/Riffle/Pool Complexes. **Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined **Characteristics:**

Subsurface Flow: No **Explain:**

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous? **Explain:**
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

- Mean high water mark indicated by:
- Survey to available datum []
- Physical markings []
- Vegetation lines/changes in vegetation types []

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify specific pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor characteristics:
- Wetland fringe characteristics:

Habitat for:

- Federally listed species: Explain findings:
- Fish/spawn areas: Explain findings:
- Other environmentally sensitive species: Explain findings:
- Aquatic/wildlife diversity: Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General wetland characteristics

Properties:
- Wetland size (ac):
- Wetland type, explain:
- Wetland quality, explain:

Project wetlands cross or serve as state boundaries, explain:

(b) General flow relationship with non-TNW:

Wetland flow is: explain:

Surface flow is:

- Characteristics:

Subsurface flow: explain findings:

(c) Wetland adjacency determination with non-TNW:

- Wetland directly abutting non-TNW
- Wetland not directly abutting non-TNW
 - Discrete wetland hydrologic connection explain:
 - Ecological connection explain:
 - Separated by berm/barrier explain:

(d) Proximity (relationship) to TNW

Project wetlands: river miles from TNW:

Project wetlands: aerial miles from TNW:

Flow is from:

Estimate approximate location of wetland within floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: ___________________ Width (ft): _______ TNW Acres _______
 - Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: _______ Width (ft): _______ Acres: _______
 - Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______

 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td>[Blank]</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>[Blank]</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td>[Blank]</td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td>[Blank]</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date):</td>
<td>Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs (Name and Date):</td>
<td>Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation</td>
<td>[Blank]</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation</td>
<td>[Blank]</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td>[Blank]</td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
<td>[Blank]</td>
</tr>
</tbody>
</table>
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 70

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ No ☒ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ No ☒ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - ☐ Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 10.99181
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 - ☐ Tributary flows directly to TNW
 - ☑ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
Stable.

Presence of Run/Riffle/Pool Complexes. Explain:
Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope):
1%

(c) Flow:

Tributary Provides for:
- Ephemeral Flow

Estimate average number of flow events in review area/year:
2-5

Describe Flow Regime:
Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
- Discrete and Confined
Characteristics:

Subsurface Flow:
- No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
Other (list):

- [] Discontinuous?
Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally -sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): []
Wetland Type, Explain: []
Wetland Quality, Explain: []
Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain: []
Surface Flow is: []
Characteristics: []
Subsurface Flow: Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: []
Project Wetlands: Aerial Miles from TNW: []
Flow is From: []
Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- ☐ Riparian Buffer Characteristics (type, average width):
- ☐ Vegetation type/percent cover. Explain: Habitat for:
 - ☐ Federally Listed Species Explain:
 - ☐ Fish/Spawn Areas Explain:
 - ☐ Other environmentally-sensitive species Explain:
 - ☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: [] Width (ft): [] TNW Acres []
- [] Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: []

Provide estimates for jurisdictional waters in the review area (check all that apply):

- [] Tributary waters Linear Feet: [] Width (Ft): []
- [] Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: []
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: []

Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 612.39 linear feet (ft), 6.54 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 70

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:

☐ National Wetlands Inventory Maps Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

✓ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

✓ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 71

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N
Long. -111.2599"W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☑ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

C. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.01090
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 ☑️ Tributary flows directly to TNW
 □ Tributary flows through ___ tributaries before entering TNW
 Project waters are ___ (or more) river miles from TNW
Feature ID: 71

U.S. Army Corps of Engineers

Project waters are **river** Miles from tributary to RPW:

Project waters are **30 (or more)** aerial (straight) miles from tributary to TPW:

Project waters are **aerial (straight)** miles from tributary to RPW:

Project waters cross or serve as state boundaries. **Explain:**

Identify flow route to TNW: **Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.**

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- [] Other, **Explain:**

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. **Explain:** Stable.]

Presence of Run/Riffle/Pool Complexes. **Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

- [] Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] **OHWM (check all the apply):** OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community

- [] Discontinuous? **Explain:**
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: ______________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ______________________________

Habitat for:

- Federally Listed Species Explain findings: _______________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally -sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: ______________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________________________
- Wetland Type, Explain: ________________________
- Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ________________________________
 Explain: ______________________________________
- Surface Flow is: _________________________________

 Characteristics: _______________________________

Subsurface Flow: ________________________________
 Explain Findings: ______________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ________________________
 - Ecological connection Explain: ________________________________
 - Separated by berm/barrier Explain: ________________________________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: ________________
- Project Wetlands: Aerial Miles from TNW: ________________
- Flow is From: ________________________________
- Estimate approximate Location of Wetland within Floodplain: _______________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Width (ft):
 - TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters:
 - Linear Feet:
 - Width (Ft):
 - Other non-wetland waters:
 - Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet:
☐ Other Non-wetland Waters MBR
☐ Wetlands MBR

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters
☐ Other waters
☐ Wetlands

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concur with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 71

USDA Nat'l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 72

| State: | AZ | County/Parish/borough: | Pinal County | City: | N/A |

Center coordinates of site: lat. 32.8482°N long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ___________________________ ☐ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Size (sq mi)</td>
<td>49650</td>
</tr>
<tr>
<td>Drainage Area (sq mi)</td>
<td>0.06149</td>
</tr>
<tr>
<td>Average Annual Rainfall (in)</td>
<td>10</td>
</tr>
<tr>
<td>Average Annual Snowfall (in)</td>
<td>0</td>
</tr>
</tbody>
</table>

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW

✓ Tributary flows through _______ tributaries before entering TNW

Project waters are _______ (or more) river miles from TNW
Project waters are 30 (or more) aerial (straight) miles from tributary to RPW: Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - [] Presence of litter and debris
 - [] Destruction of terrestrial vegetation
 - [] Presence of wrack line
 - [] Sediment sorting
 - [] Scour
 - [] Multiple observed or predicted flow events
 - [] Abrupt change in plant community
- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: _______________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally-sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): ____________________________

Wetland Type, Explain: ____________________________

Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________

Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: ____________________________

Ecological connection Explain: ____________________________

Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: __________ Width (ft): _______ TNW Acres _______
- [] Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

Provide estimates for jurisdictional waters in the review area (check all that apply):

- [] Tributary waters Linear Feet: __________ Width (Ft): __________ Acres: __________
- [] Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): [] Width (ft): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet : [] width (ft): []
☐ Other Non-wetland Waters MBR acres: []
☐ Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters [] linear feet (ft), 525.29 width (ft) 5.97
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 72

USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 73

- State: AZ
- County/Parish/borough: Pinal County
- City: N/A
- Center coordinates of site: Lat. 32.8482°N, Long. -111.2599°W
- Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
- Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
- Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___________ Linear Feet ___________ Width (ft) and/or ___________ Acres
 Wetlands Acres: ___________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 - Identify TNW:
 - Vegetation:

Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 -

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.23371
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - Physical Characteristics:
 - Relationship with TNW:
 - Tributary flows directly to TNW
 - Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
- Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous? Explain:

Presence of litter and debris

Destruction of terrestrial vegetation

Presence of wrack line

Sediment sorting

Scour

Multiple observed or predicted flow events

Abrupt change in plant community
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: etc.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - [] TNWs Linear Feet: _______ Width (ft): _______ TNW Acres _______
 - [] Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: _______ Width (ft): _______ Acres: _______
 - [] Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 551.72 linear feet (ft), 8.93 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 74

<table>
<thead>
<tr>
<th>State</th>
<th>AZ</th>
<th>County/Parish/borough</th>
<th>Pinal</th>
<th>City</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Center coordinates of site: Lat.</th>
<th>Long.</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.8482°N</td>
<td>-111.2599°W</td>
<td></td>
</tr>
</tbody>
</table>

Name of nearest waterbody:

Gila River between Powers Butte and Gillespie Dam

<table>
<thead>
<tr>
<th>Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gila River between Powers Butte and Gillespie Dam</td>
</tr>
</tbody>
</table>

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters __________ Linear Feet __________ Width (ft) and/or __________ Acres

 Wetlands Acres: __________

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW: ____________________________
 - Vegetation

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) **General Area Conditions:**

 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.40373
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) **Physical Characteristics:**

 (a) **Relationship with TNW**

 - Tributary flows directly to TNW
 - Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
General Tributary Characteristics

- **Tributary is:** Natural

- **Tributary properties with respect to top of bank (estimate):**
 - Average Width (ft):
 - Average Depth (ft):
 - Average Side Slopes: 3:1
- **Primary tributary substrate composition (check all that apply):**
 - Silts
 - Sands
 - Concrete
 - Gravel
 - Other, Explain:
- **Tributary Condition/Stability** [e.g., highly eroding, sloughing banks. Explain: Stable.
- **Presence of Run/Riffle/Pool Complexes. Explain:** Not present.
- **Tributary Geometry:** Relatively Straight
- **Tributary Gradient (approximate average slope):** 1%

Flow

- **Tributary Provides for:** Ephemeral Flow
- **Estimate average number of flow events in review area/year:** 2-5
- **Describe Flow Regime:** Ephemeral.
- **Other Information on Duration and Volume:**
- **Surface Flow is:** Discrete and Confined

- **Subsurface Flow:** No

- **Dye (or other) test performed:**

Tributary Has (Check all that apply):

- Bed and Banks
- **OHWM (check all the apply):** OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

- **Presence of litter and debris**
- **Destruction of terrestrial vegetation**
- **Presence of wrack line**
- **Sediment sorting**
- **Scour**
- **Multiple observed or predicted flow events**
- **Abrupt change in plant community**

- **Discontinuous?** Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ____________________________
- [] Oil or scum line along shore objects ____________________
- [] Fine shell or debris deposits (foreshore) ______________
- [] Physical markings/characteristics ______________________
- [] Tidal gauges __
- [] Other ___
- [] Mean high water mark indicated by: ____________________
- [] Survey to available datum ______________________________
- [] Physical markings __________________________________
- [] Vegetation lines/changes in vegetation types ____________

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ________________________
- [] Wetland Fringe Characteristics: __________________________

Habitat for:

- [] Federally Listed Species Explain findings: __________________
- [] Fish/Spawn Areas Explain findings: _________________________
- [] Other environmentally-sensitive species Explain findings: ___________
- [] Aquatic/Wildlife diversity Explain: _________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): _________________________
- Wetland Type, Explain: ________________________
- Wetland Quality, Explain: _______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ______________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: _________________________ Explain: ______________________

Surface Flow is: __________________________

Characteristics: __________________________

Subsurface Flow: __________________________ Explain Findings: __________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain: ___________________________
- [] Ecological connection Explain: ___________________________
- [] Separated by berm/barrier Explain: ___________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ______________________

Project Wetlands: Aerial Miles from TNW: ______________________

Flow is From: __________________________

Estimate approximate Location of Wetland within Floodplain: ______________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: Width (ft): TNW Acres
- Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 546.63 linear feet (ft), 8.87 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:
Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 75
State: AZ County/Parish/borough: Pinal County City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:
2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 | Watershed Size (sq mi): | 49650 |
 | Drainage Area (sq mi): | 0.65192 |
 | Average Annual Rainfall (in): | 10 |
 | Average Annual Snowfall (in): | 0 |

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 □ Tributary flows through _______ tributaries before entering TNW
 □ Project waters are _______ river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobbles
- Sands
- Concrete
- Gravel
- Substrate - Vegetation
- Muck
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:
Subsurface Flow: No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
- Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- oil or scum line along shore objects []
- fine shell or debris deposits (foreshore) []
- physical markings/characteristics []
- tidal gauges []
- other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: []

Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally-sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: []
- Surface Flow is: []

Characteristics: []

Subsurface Flow: []

Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []

- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []

Flow is From: []

Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explanation

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft):
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.
Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet: width (ft):
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

- **USDA Nat’l Res Conservation Service Soil Survey**
 Citation:
- **National Wetlands Inventory Maps**
 Cite Map Name:
- **State/Local Wetland Inventory Maps**
- **FEMA/FIRM Maps:**
- **100-year Floodplain Elevation is:** [National Geodetic Vertical Datum of 1929]

- **Aerial Photographs**
 (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs**
 (Name and Date): Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 File No. and Date of Response Letter:

- **Applicable/Supporting Case Law**
 Citation:

- **Applicable/Supporting Scientific Literature**
 Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There ☐ Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There ☐ Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ________________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.03083
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 76

U.S Army Corps of Engineers

Project waters are river miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW:

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Explain:

Tributary properties with respect to top of bank (estimate):

- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Characteristics:

Subsurface Flow: No

Explain:

- Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________
- Mean High water Mark indicated by: ____________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________

Identify Specific Pollutants, if known: ____________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________
- Wetland Fringe Characteristics: ____________

Habitat for:

- Federally Listed Species Explain findings: ____________
- Fish/Spawn Areas Explain findings: ____________
- Other environmentally -sensitive species Explain findings: ____________
- Aquatic/Wildlife diversity Explain: ____________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): ____________
Wetland Type, Explain: ____________
Wetland Quality, Explain: ____________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________ Explain: ____________
Surface Flow is: ____________
Characteristics: ____________
Subsurface Flow: ____________ Explain Findings: ____________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: ____________
 - Ecological connection Explain: ____________
 - Separated by berm/barrier Explain: ____________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________
Project Wetlands: Aerial Miles from TNW: ____________
Flow is From: ____________
Estimate approximate Location of Wetland within Floodplain: ____________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________
 - Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: __________ Width (Ft): __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [✓] Non-wetland waters 612.90 linear feet, 7.65 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [✓] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [✓] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [✓] US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 76</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat'l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
<td></td>
</tr>
<tr>
<td>✓ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
<td></td>
</tr>
<tr>
<td>✓ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
<td></td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
<td></td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
<td></td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 77

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c.Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ___________ □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

Watershed Size (sq mi):	49650
Drainage Area (sq mi):	0.02655
Average Annual Rainfall (in):	10
Average Annual Snowfall (in):	0

(ii) Physical Characteristics:

(a) Relationship with TNW

☐ Tributary flows directly to TNW □ Tributary flows through _____ tributaries before entering TNW

Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________
- Mean High water Mark indicated by: ____________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________
- Wetland Fringe Characteristics: ____________

Habitat for:

- Federally Listed Species Explain findings: ____________
- Fish/Spawn Areas Explain findings: ____________
- Other environmentally sensitive species Explain findings: ____________
- Aquatic/Wildlife diversity Explain: ____________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________
- Wetland Type, Explain: ____________
- Wetland Quality, Explain: ____________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ____________ Explain: ____________
- Surface Flow is: ____________

Characteristics: ____________

Subsurface Flow: ____________ Explain Findings: ____________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: ____________
Ecological connection Explain: ____________
Separated by berm/barrier Explain: ____________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________
Project Wetlands: Aerial Miles from TNW: ____________

Flow is From: ____________

Estimate approximate Location of Wetland within Floodplain: ____________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th></th>
<th>TNWs Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
</tr>
</tbody>
</table>

2. **RPWs that flow directly or indirectly into TNWs**

<table>
<thead>
<tr>
<th></th>
<th>Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:</td>
</tr>
</tbody>
</table>

Provide estimates for jurisdictonal waters in the review are (check all that apply):

<table>
<thead>
<tr>
<th></th>
<th>Tributary waters Linear Feet:</th>
<th>Width (Ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Other non-wetland waters: Acres:</td>
<td></td>
</tr>
</tbody>
</table>

3. **Non-RPWs that flow directly or indirectly into TNWs.**

| | Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. |

Provide estimates of jurisdictonal waters within the review area (check all that apply):

<table>
<thead>
<tr>
<th></th>
<th>Length (Linear Feet):</th>
<th>Width (feet):</th>
<th>Acres:</th>
</tr>
</thead>
</table>

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

| | Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. |

| | Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: |

| | Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: |

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

| | Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. |

Provide acreage estimates for jurisdictional wetland in the review area: Acres: |

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
- [] Other Non-wetland Waters MBR acres: ______
- [] Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters 863.15 linear feet (ft), 6.56 width (ft)
- [] Other waters
- [] Wetlands

SECTON IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Submitted by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 77

- USDA Nat’l Res Conservation Service Soil Survey
 Citation:

- National Wetlands Inventory Maps
 Cite Map Name:

- State/Local Wetland Inventory Maps

- FEMA/FIRM Maps:

- 100-year Floodplain Elevation is: __________________________ (National Geodetic Vertical Datum of 1929)

 - Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

- Previous Determinations
 File No. and Date of Response Letter:

- Applicable/Supporting Case Law Citation:

- Applicable/Supporting Scientific Literature Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 78

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: □ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a TNW that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.27461
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 78

U.S Army Corps of Engineers

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>□ Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
</tbody>
</table>

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

<table>
<thead>
<tr>
<th>Average Width (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Depth (ft):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

| Average Side Slopes: | 3:1 |

Primary tributary substrate composition (check all that apply):

- ✔ Silts
- ☐ Sands
- ☐ Concrete
- ☐ Muck
- ☐ Gravel
- ☐ Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

☐ Dye (or other) test performed:

Tributary Has (Check all that apply):

- ☐ Bed and Banks
- ✔ OHWM (check all the apply): OHWM Indicators:
 - ☐ Clear, natural line impressed on the bank
 - ✔ Changes in soil character
 - ☐ Shelving
 - ☐ Vegetation matted down, bent or absent
 - ☐ Leaf litter disturbed or washed away
 - ☐ Sediment deposition
 - ☐ Water staining
 - Other (list):

☐ Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: XXX
- Mean High water Mark indicated by: XXX
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: XXX

Identify Specific Pollutants, if known: XXX

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: XXX
- Wetland Fringe Characteristics: XXX

Habitat for:

- Federally Listed Species Explain findings: XXX
- Fish/Spawn Areas Explain findings: XXX
- Other environmentally sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): XXX
- Wetland Type, Explain: XXX
- Wetland Quality, Explain: XXX

Project Wetlands Cross or Serve as State Boundaries, Explain: XXX

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: XXX Explain: XXX
- Surface Flow is: XXX
- Characteristic:
- Subsurface Flow: XXX Explain Findings: XXX

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain: XXX
- Ecological connection Explain: XXX
- Separated by berm/barrier Explain: XXX

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: XXX
Project Wetlands: Aerial Miles from TNW: XXX

Flow is From: XXX

Estimate approximate Location of Wetland within Floodplain: XXX
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT Nexus DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
6. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☒ Office Concurs with data sheets/delineation report
☒ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 78</th>
</tr>
</thead>
</table>

- **USDA Nat'l Res Conservation Service Soil Survey**: Citation:
- **National Wetlands Inventory Maps**: Cite Map Name:
- **State/Local Wetland Inventory Maps**:
- **FEMA/FIRM Maps**:
- **100-year Floodplain Elevation is**: (National Geodetic Vertical Datum of 1929)
 - **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations File No. and Date of Response Letter**:
- **Applicable/Supporting Case Law Citation**:
- **Applicable/Supporting Scientific Literature Citation**:
 - **Other Information, Please Specify**:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 79

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center coordinates of site: Lat. 32.8482°N</td>
<td>Long. -111.2599°W</td>
<td></td>
</tr>
</tbody>
</table>

Name of nearest waterbody:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters _______ Linear Feet _______ Width (ft) and/or _______ Acres

 Wetlands Acres: _______

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs
 The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)
 This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

 The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

 A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

 If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00813
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
 Average Width (ft):
 Average Depth (ft):
 Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobble
- [] Bedrock
- [] Gravel
- [] Substrate - Vegetation

Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
Stable.

Presence of Run/Riffle/Pool Complexes. Explain:
Not present.

Tributary Geometry:
Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for:
Ephemeral Flow

Estimate average number of flow events in review area/year:
2-5

Describe Flow Regime:
Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
Discrete and Confined
Characteristics:

Subsurface Flow:
No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

Other (list):

[] Discontinuous?
Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is:
- Surface Flow is:

 Characteristics:

 Subsurface Flow:

 Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: _______ Width (ft): _______ TNW Acres _______
☐ Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: _______ Width (ft): _______ Acres: _______
☐ Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 ☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______

 ☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): __________ Acres: __________

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): __________ linear feet: __________ width (ft): __________
- Other Non-wetland Waters MBR __________ acres: __________
- Wetlands MBR __________ acres: __________

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters __________ linear feet (ft), __________ width (ft)
- Other waters __________ acres
- Wetlands __________ acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 79

☐ USDA Nat'l Res Conservation Service Soil Survey Citation: []

☐ National Wetlands Inventory Maps Cite Map Name: []

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 8

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date: ☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

a. Indicate presence of water of U.S. in review area (Check all the apply):

☐ TNWs (new)
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters Linear Feet Width (ft) and/or Acres

Wetlands Acres:

c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary and that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.54810
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW
Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobbles
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Hi tide line indicated by:
Mean High water Mark indicated by:

- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: ______ Width (ft): ______ TNW Acres ______

☐ Wetlands adjacent to TNWs: Acres: ______

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ______

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ______

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: ______ Width (ft): ______

☐ Other non-wetland waters: Acres: ______

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): ______ Width (feet): ______ Acres: ______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ______

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ______

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: ______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 6512.70 linear feet (ft), 5.62 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 8</th>
</tr>
</thead>
</table>

- **USDA Nat’l Res Conservation Service Soil Survey**
 - Citation: []

- **National Wetlands Inventory Maps**
 - Cite Map Name: []

- **State/Local Wetland Inventory Maps**
 - Citation: []

- **FEMA/FIRM Maps**
 - Citation: []

- **100-year Floodplain Elevation is:**
 - (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs**
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs**
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 - File No. and Date of Response Letter: []

- **Applicable/Supporting Case Law**
 - Citation: []

- **Applicable/Supporting Scientific Literature**
 - Citation: []

 - Other Information, Please Specify: []

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 80

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g. offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters [] Linear Feet [] Width (ft) and/or [] Acres
 Wetlands Acres: []

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04495
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):
- [x] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [x] Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [x] OHWM (check all the apply): OHWM Indicators:
 - [x] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [x] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

Other (list):

Discontinuous?

Other Information on Duration and Volume:

Other (list):

Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects: []
- Fine shell or debris deposits (foreshore): []
- Physical markings/characteristics: []
- Tidal gauges: []
- Other: []

- Mean High water Mark indicated by: []
- Survey to available datum: []
- Physical markings: []
- Vegetation lines/changes in vegetation types: []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain: []
- Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: [] Explain: []
- Surface Flow is: [] Characteristics:
 - Subsurface Flow: [] Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
 - Discrete wetland hydrologic connection Explain: []
 - Ecological connection Explain: []
 - Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []
- Flow is From: []
- Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):

- □ Vegetation type/percent cover. Explain:

 Habitat for:
 - □ Federally Listed Species Explain:
 - □ Fish/Spawn Areas Explain:
 - □ Other environmentally-sensitive species Explain:
 - □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres
☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (ft).
☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c. Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW.

Provide acreage estimates for jurisdictional wetland in the review area:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. Provide acreage estimates for jurisdictional wetland in the review area:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet:
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 698.03 linear feet (ft), 12.76 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 80</th>
</tr>
</thead>
</table>

| USDA Nat’l Res Conservation Service Soil Survey | Citation: |
| National Wetlands Inventory Maps | Cite Map Name: |
| State/Local Wetland Inventory Maps |
| FEMA/FIRM Maps: |

- 100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)
- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012

<table>
<thead>
<tr>
<th>Previous Determinations</th>
<th>File No. and Date of Response Letter:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Applicable/Supporting Case Law</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation:</td>
</tr>
</tbody>
</table>

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 81

State: AZ County/Parish/borough: Pinal City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TWN**
 - Identify TNW: ___________________________ □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.02405
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 - □ Tributary flows directly to TNW
 - ✓ Tributary flows through [4] tributaries before entering TNW
 - Project waters are [30 (or more)] river miles from TNW
81

Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM

U.S. Army Corps of Engineers

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
</tbody>
</table>

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):

- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain: Stable.

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

<table>
<thead>
<tr>
<th>Presence of Run/Riffle/Pool Complexes. Explain:</th>
<th>Not present.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary Geometry:</td>
<td>Relatively Straight</td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope):</td>
<td>1%</td>
</tr>
</tbody>
</table>

(c) Flow

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
</table>

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

<table>
<thead>
<tr>
<th>Surface Flow is:</th>
<th>Discrete and Confined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsurface Flow:</td>
<td>No</td>
</tr>
<tr>
<td>Dye (or other) test performed:</td>
<td></td>
</tr>
</tbody>
</table>

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

<table>
<thead>
<tr>
<th>Other (list):</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Discontinuous?</th>
<th>Explain:</th>
</tr>
</thead>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Oil or scum line along shore objects: []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics: []
- Tidal gauges: []
- Other: []
- Mean High water Mark indicated by: []
- Survey to available datum: []
- Physical markings: []
- Vegetation lines/changes in vegetation types: []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain: []
- Identify Specific Pollutants, if known: []

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species: []
- Fish/Spawn Areas: []
- Other environmentally-sensitive species: []
- Aquatic/Wildlife diversity: []

(ii) Findings:

- Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

- Properties:
 - Wetland Size (ac): []
 - Wetland Type, Explain: []
 - Wetland Quality, Explain: []

- Project Wetlands Cross or Serve as State Boundaries, Explain: []

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: []
- Explain: []

- Surface Flow is: []

- Characteristics: []

- Subsurface Flow: []
- Explain Findings: []

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
 - Discrete wetland hydrologic connection: []
 - Ecological connection: []
 - Separated by berm/barrier: []

(d) Proximity (Relationship) to TNW:

- Project Wetlands: River Miles from TNW: []
- Project Wetlands: Aerial Miles from TNW: []

- Flow is From: []

- Estimate approximate Location of Wetland within Floodplain: []
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):

- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:

- Fish/Spawn Areas Explain:

- Other environmentally-sensitive species Explain:

- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs
 - Linear Feet:
 - Width (ft):
 - TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters
 - Linear Feet:
 - Width (Ft):
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):
 - Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTIONS IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by
 Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
USDA Nat'l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date):

Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑️ Other Photographs (Name and Date):

Ground Photos; June through July 2012, September through October 2012

Previous Determinations

File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 82

State: AZ County/Parish/borough: Pinal County City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

(i) General Area Conditions:

Watershed Size (sq mi):	49650
Drainage Area (sq mi):	0.00603
Average Annual Rainfall (in):	10
Average Annual Snowfall (in):	0

(ii) Physical Characteristics:

(a) Relationship with TNW

Tributary flows directly to TNW	☐
Tributary flows through	☑ 4 tributaries before entering TNW
Project waters are	30 (or more) river miles from TNW
Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Bedrock
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
- Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

Feature ID: 82
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

Mean High water Mark indicated by:
- survey to available datum
- physical markings
- vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac):

Wetland Type, Explain:

Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is:

Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Hi
g
h
tide line indicated by:

Mean

Discrete

Optical

b
terms

line

discerned,

oily

film;

water

quality;

general

watershed

characteristics,

etc):

Explain:

Identify Specific Pollutants, if known:

Riparian Corridor Characteristics:

Wetland Fringe Characteristics:

Wetland Directly Abutting Non-TNW

Subsurface Flow:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:
- □ Habitat for:
 - □ Federally Listed Species Explain:
 - □ Fish/Spawn Areas Explain:
 - □ Other environmentally-sensitive species Explain:
 - □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Wetlands adjacent to TNWs

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (ft): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
- Other Non-wetland Waters MBR: acres: []
- Wetlands MBR: acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [] Non-wetland waters: 555.85 linear feet (ft), 5.69 width (ft)
- [] Other waters: acres
- [] Wetlands: acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- [] Office Concurs with data sheets/delineation report
- [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
□ USDA Nat’l Res Conservation Service Soil Survey Citation:
□ National Wetlands Inventory Maps Cite Map Name:
□ State/Local Wetland Inventory Maps
□ FEMA/FIRM Maps:
□ 100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
□ Previous Determinations File No. and Date of Response Letter:
□ Applicable/Supporting Case Law Citation:
□ Applicable/Supporting Scientific Literature Citation:
Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 83

State: AZ
County/Parish/borough: Pinal County
City: N/A

Determine Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Determine Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Determine Name of watershed or Hydrologic Unit Code (HUC):
15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329 in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)

 ☐ Wetlands adjacent to TNWs

 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs

 ☐ Non-RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs

 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs

 ☐ Impoundments of jurisdictional waters

 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00370
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
<table>
<thead>
<tr>
<th>Feature ID: 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are crossed or serve as state boundaries. Explain:</td>
</tr>
<tr>
<td>Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.</td>
</tr>
</tbody>
</table>

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is: Natural Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary properties with respect to top of bank (estimate):</td>
</tr>
<tr>
<td>Average Width (ft):</td>
</tr>
<tr>
<td>Average Depth (ft):</td>
</tr>
<tr>
<td>Average Side Slopes: 3:1</td>
</tr>
<tr>
<td>Primary tributary substrate composition (check all that apply):</td>
</tr>
<tr>
<td>☑ Silts</td>
</tr>
<tr>
<td>☐ Sands</td>
</tr>
<tr>
<td>☐ Concrete</td>
</tr>
<tr>
<td>☐ Muck</td>
</tr>
<tr>
<td>☐ Gravel</td>
</tr>
<tr>
<td>☑ Substrate - Vegetation</td>
</tr>
<tr>
<td>Other, Explain:</td>
</tr>
<tr>
<td>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.</td>
</tr>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain: Not present.</td>
</tr>
<tr>
<td>Tributary Geometry: Relatively Straight</td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope): 1%</td>
</tr>
</tbody>
</table>

(c) Flow

<table>
<thead>
<tr>
<th>Tributary Provides for: Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate average number of flow events in review area/year: 2-5</td>
</tr>
<tr>
<td>Describe Flow Regime: Ephemeral.</td>
</tr>
<tr>
<td>Other Information on Duration and Volume:</td>
</tr>
<tr>
<td>Surface Flow is: Discrete and Confined Characteristics:</td>
</tr>
<tr>
<td>Subsurface Flow: No Explain:</td>
</tr>
<tr>
<td>☐ Dye (or other) test performed:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tributary Has (Check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Bed and Banks</td>
</tr>
<tr>
<td>☑ OHWM (check all the apply): OHWM Indicators:</td>
</tr>
<tr>
<td>☑ Clear, natural line impressed on the bank</td>
</tr>
<tr>
<td>☑ Changes in soil character</td>
</tr>
<tr>
<td>☑ Shelving</td>
</tr>
<tr>
<td>☑ Vegetation matted down, bent or absent</td>
</tr>
<tr>
<td>☑ Leaf litter disturbed or washed away</td>
</tr>
<tr>
<td>☑ Sediment deposition</td>
</tr>
<tr>
<td>☑ Water staining</td>
</tr>
<tr>
<td>☑ Presence of litter and debris</td>
</tr>
<tr>
<td>☐ Destruction of terrestrial vegetation</td>
</tr>
<tr>
<td>☐ Presence of wrack line</td>
</tr>
<tr>
<td>☐ Sediment sorting</td>
</tr>
<tr>
<td>☑ Scour</td>
</tr>
<tr>
<td>☑ Multiple observed or predicted flow events</td>
</tr>
<tr>
<td>☑ Abrupt change in plant community</td>
</tr>
<tr>
<td>Other (list):</td>
</tr>
<tr>
<td>☐ Discontinuous? Explain:</td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________________________
- Mean High water Mark indicated by: __________________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________________
- Wetland Fringe Characteristics: ____________________________

Habitat for:

- Federally Listed Species Explain findings: ____________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally -sensitive species Explain findings: ____________________________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ____________________________
- Wetland Type, Explain: ____________________________
- Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: ____________________________
Ecological connection Explain: ____________________________
Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________
Project Wetlands: Aerial Miles from TNW: ____________________________
Flow is From: ____________________________
Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- ☐ Riparian Buffer Characteristics (type, average width):
- ☐ Vegetation type/percent cover. Explain:

Habitat for:

- ☐ Federally Listed Species Explain:
- ☐ Fish/Spawn Areas Explain:
- ☐ Other environmentally-sensitive species Explain:
- ☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

□ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
□ Other Non-wetland Waters MBR acres: _______
□ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), _______ width (ft) _______
☐ Other waters acres: _______
☐ Wetlands acres: _______

SECTIONS IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☑ Data Sheets Prepared by the Corps
☑ Corps Navigable Water Study
☑ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 83

USDA Nat'l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013
B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending
C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 84
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody:
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g, offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There ☐ "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There ☐ "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters ___________ Linear Feet ___________ Width (ft) and/or ___________ Acres
 Wetlands Acres: ___________

 c. Limits (boundaries) of Jurisdiction based on:
 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04014
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics
Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- [] Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:
Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:
Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:
[] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
- [] Presence of litter and debris
- [] Destruction of terrestrial vegetation
- [] Presence of wrack line
- [] Sediment sorting
- [] Scour
- [] Multiple observed or predicted flow events
- [] Abrupt change in plant community
Other (list):
[] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally -sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: [] Width (ft): [] TNW Acres []
 - Wetlands adjacent to TNWs: Acres: []

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: []
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: [] Width (ft): []
 - Other non-wetland waters: Acres: []

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): [] Width (feet): [] Acres: []

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: []

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: []

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 84

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams) linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 582.91 linear feet, 7.28 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID:</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey</td>
<td>Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
<td></td>
</tr>
<tr>
<td>100-year Floodplain Elevation is:</td>
<td>(National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs</td>
<td>(Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs</td>
<td>(Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations</td>
<td>File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law</td>
<td>Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature</td>
<td>Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 85
State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☒ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☒ TNWs (new)
 ☒ Wetlands adjacent to TNWs
 ☒ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☒ Non-RPWS that flow directly or indirectly into TNWs
 ☒ Wetlands directly abutting RPWS that flow directly or indirectly into TNWs
 ☒ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☒ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☒ Impoundments of jurisdictional waters
 ☒ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☒ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.82207
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Gravel
- Cobble
- Bedrock
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Discontinuous? Explain:
Feature ID: 85

U.S. Army Corps of Engineers

APPROVED JURISDICTIONAL DETERMINATION FORM

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by: ____________________________
- [] Oil or scum line along shore objects
- [] Fine shell or debris deposits (foreshore)
- [] Physical markings/characteristics
- [] Tidal gauges
- [] Other

- [] Mean high water mark indicated by:
- [] Survey to available datum
- [] Physical markings
- [] Vegetation lines/changes in vegetation types

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics: ____________________________
- [] Wetland Fringe Characteristics: ______________________________

Habitat for:

- [] Federally Listed Species Explain findings: _______________________
- [] Fish/Spawn Areas Explain findings: ______________________________
- [] Other environmentally sensitive species Explain findings: _______
- [] Aquatic/Wildlife diversity Explain: ______________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- [] Wetland Size (ac): ______________________
- [] Wetland Type, Explain: ______________________
- [] Wetland Quality, Explain: ______________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ______________________ Explain: ______________________

Surface Flow is: ______________________

Characteristics: __

Subsurface Flow: ______________________ Explain Findings: ________________

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland directly abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain: ______________________
- [] Ecological connection Explain: ______________________
- [] Separated by berm/barrier Explain: ______________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ______________________

Project Wetlands: Aerial Miles from TNW: ______________________

Flow is From: ______________________

Estimate approximate Location of Wetland within floodplain: ________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

- All wetland(s) being considered in cumulative analysis:
- Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>Option</th>
<th>Size Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNWs</td>
<td>Linear Feet:</td>
</tr>
<tr>
<td>Wetlands adjacent to TNWs</td>
<td>Acres:</td>
</tr>
</tbody>
</table>

2. RPWs that flow directly or indirectly into TNWs

<table>
<thead>
<tr>
<th>Option</th>
<th>Size Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributaries of TNWs</td>
<td>Linear Feet:</td>
</tr>
<tr>
<td>Tributaries of TNW</td>
<td>Width (ft):</td>
</tr>
<tr>
<td>Tributaries of TNW, seasonally</td>
<td>Width (ft):</td>
</tr>
<tr>
<td>Tributaries of TNW, perennials</td>
<td>Width (ft):</td>
</tr>
</tbody>
</table>

3. Non-RPWs that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Option</th>
<th>Size Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterbody</td>
<td>Length (Linear Feet):</td>
</tr>
<tr>
<td>Non-RPWs</td>
<td>Width (ft):</td>
</tr>
<tr>
<td>Non-RPWs</td>
<td>Acres:</td>
</tr>
</tbody>
</table>

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

<table>
<thead>
<tr>
<th>Option</th>
<th>Size Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands directly abutting an RPW</td>
<td>Linear Feet:</td>
</tr>
<tr>
<td>Wetlands directly abutting an RPW</td>
<td>Width (ft):</td>
</tr>
</tbody>
</table>

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

<table>
<thead>
<tr>
<th>Option</th>
<th>Size Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands that do not directly abut an RPW</td>
<td>Linear Feet:</td>
</tr>
<tr>
<td>Wetlands that do not directly abut an RPW</td>
<td>Width (ft):</td>
</tr>
</tbody>
</table>

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): [] Acres: []

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland-Waters (i.e., rivers, streams): linear feet: [] width (ft): []
☐ Other Non-wetland Waters MBR acres: []
☐ Wetlands MBR acres: []

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☒ Non-wetland waters 5538.82 linear feet (ft), 6.49 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☒ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☒ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☒ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 85</th>
</tr>
</thead>
</table>

- [] USDA Nat'l Res Conservation Service Soil Survey
 Citation: [Blank]
- [] National Wetlands Inventory Maps
 Cite Map Name: [Blank]
- [] State/Local Wetland Inventory Maps
- [] FEMA/FIRM Maps: [Blank]
- [] 100-year Floodplain Elevation is: [Blank] (National Geodetic Vertical Datum of 1929)
 - [X] Aerial Photographs
 Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - [X] Other Photographs
 Name and Date: Ground Photos; June through July 2012, September through October 2012
- [] Previous Determinations
 File No. and Date of Response Letter: [Blank]
- [] Applicable/Supporting Case Law
 Citation: [Blank]
- [] Applicable/Supporting Scientific Literature
 Citation: [Blank]
 Other Information, Please Specify: [Blank]

Additional Comments to Support JD: [Blank]
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 86
State: AZ
County/Parish/borough: Pinal
City: N/A
Center coordinates of site: Lat. 32.8482"N Long. -111.2599"W
Name of nearest riverbody: Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters _________ Linear Feet _______ Width (ft) and/or _______ Acres
 Wetlands Acres: _______
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00603
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: 86

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: ____________________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ____________________
- Wetland Fringe Characteristics: ________________________

Habitat for:

- Federally Listed Species Explain findings: ________________________
- Fish/Spawn Areas Explain findings: ____________________________
- Other environmentally sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac): __________________
- Wetland Type, Explain: __________________
- Wetland Quality, Explain: __________________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __________________ Explain: __________________

Surface Flow is: __________________

Characteristics: __________________

Subsurface Flow: __________________ Explain Findings: __________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: __________________

Ecological connection Explain: __________________

Separated by berm/barrier Explain: __________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __________________

Project Wetlands: Aerial Miles from TNW: __________________

Flow is From: __________________

Estimate approximate Location of Wetland within Floodplain: __________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
 Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: __________ Width (ft): __________ TNW Acres __________

☐ Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: __________ Width (ft): __________ Acres: __________

☐ Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- [] Other Non-wetland Waters MBR acres:
- [] Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [x] Non-wetland waters linear feet, width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [x] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [x] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [x] Office Concurs with data sheets/delineation report
 - [x] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [x] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 86</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>USDA Nat'l Res Conservation Service Soil Survey</th>
<th>Citation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Wetlands Inventory Maps</td>
<td>Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
<td></td>
</tr>
<tr>
<td>FEMA/FIRM Maps</td>
<td></td>
</tr>
</tbody>
</table>

- **100-year Floodplain Elevation is:** (National Geodetic Vertical Datum of 1929)
 - Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
 - Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

- Previous Determinations File No. and Date of Response Letter:
- Applicable/Supporting Case Law Citation:
- Applicable/Supporting Scientific Literature Citation:
 - Other Information, Please Specify: |

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
- July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
- Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
- **Drainage Feature 87**
 - **State:** AZ
 - **County/Parish/borough:** Pinal County
 - **City:** N/A
 - **Center coordinates of site:** Lat. 32.8482°N, Long. -111.2599°W

Name of nearest waterbody:
- Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):
- 15050100

- ☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
- ☐ Office (Desk) Determination. **Date:**
- ☑ Field Determination. **Date(s):** 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
- There **Are No** "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
- ☐ Waters subject to the ebb and flow of the tide.
- ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
- There **Are No** "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.
 1. **Waters of the U.S.**
 a. **Indicate presence of water of U.S. in review area (Check all the apply):**
 - ☐ TNWs (new)
 - ☐ Wetlands adjacent to TNWs
 - ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - ☐ Non-RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - ☐ Impoundments of jurisdictional waters
 - ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. **Identify (estimate) size of waters of the U.S. in the review area**
 - Non-Wetlands waters ___________ Linear Feet
 - Width (ft) and/or ___________ Acres
 - Wetlands Acres: ___________

 c. **Limits (boundaries) of Jurisdiction based on:**

 2. **Non-Regulated Waters/Wetlands (check if applicable):**
 - ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 - **Explanation:** Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.06525
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 87

U.S Army Corps of Engineers

Project waters are crossed or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:
Stable.

Presence of Run/Riffle/Pool Complexes. Explain:
Not present.

Tributary Geometry:
- Relatively Straight

Tributary Gradient (approximate average slope):
1%

(c) Flow:

Tributary Provides for:
- Ephemeral Flow

Estimate average number of flow events in review area/year:
2-5
Describe Flow Regime:
Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:
- Discrete and Confined

Subsurface Flow:
- No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

[] Discontinuous?
Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: __________
- Mean High water Mark indicated by: __________
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: __________

Identify Specific Pollutants, if known: __________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: __________
- Wetland Fringe Characteristics: __________

Habitat for:

- Federally Listed Species Explain findings: __________
- Fish/Spawn Areas Explain findings: __________
- Other environmentally -sensitive species Explain findings: __________
- Aquatic/Wildlife diversity Explain: __________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): __________
- Wetland Type, Explain: __________
- Wetland Quality, Explain: __________

Project Wetlands Cross or Serve as State Boundaries, Explain: __________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: __________
- Surface Flow is: __________

Characteristics: __________

Subsurface Flow: __________

Explain Findings: __________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain: __________
- Ecological connection Explain: __________
- Separated by berm/barrier Explain: __________

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW: __________
- Project Wetlands: Aerial Miles from TNW: __________

Flow is From: __________

Estimate approximate Location of Wetland within Floodplain: __________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width): Explain:
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: _______ Width (ft): _______ TNW Acres: _______

☐ Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: _______ Width (ft): _______

☐ Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
Other Non-wetland Waters MBR acres:
Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft)
☑ Other waters acres
☑ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 87

USDA Nat'l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
 July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
 Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 88
 State: AZ
 County/Parish/borough: Pinal County
 City: N/A
 Center coordinates of site: Lat. 32.8482°N
 Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
 ☑ Field Determination. Date: 10/2012
 ☐ Office (Desk) Determination. Date:

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
 There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
 There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

 1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

 2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TW
 Identify TW:
 □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 1.40236
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TW
 □ Tributary flows directly to TW
 ✔ Tributary flows through 4 tributaries before entering TW
 Project waters are 30 (or more) river miles from TW
Project waters are river Miles from tributary to RPW:

Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain]: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

☐ High tide line indicated by: ____________________________ ☐ Mean High water Mark indicated by: ____________________________
☐ oil or scum line along shore objects ☐ survey to available datum
☐ fine shell or debris deposits (foreshore) ☐ physical markings
☐ physical markings/characteristics ☐ vegetation lines/changes in vegetation types
☐ tidal gauges
☐ other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

☐ Riparian Corridor Characteristics: ____________________________
☐ Wetland Fringe Characteristics: ____________________________

Habitat for:

☐ Federally Listed Species Explain findings: ____________________________
☐ Fish/Spawn Areas Explain findings: ____________________________
☐ Other environmentally -sensitive species Explain findings: ____________________________
☐ Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:

Wetland Size (ac): ____________________________

Wetland Type, Explain: ____________________________

Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

☐ Wetland Directly Abutting Non-TNW
☐ Wetland Not Directly Abutting Non-TNW

☐ Discrete wetland hydrologic connection Explain: ____________________________
☐ Ecological connection Explain: ____________________________
☐ Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:
Characte‌rize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters
Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
☐ Other Non-wetland Waters MBR acres: ______
☐ Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet (ft), ______ acres ______
☐ Other waters acres ______
☐ Wetlands acres ______

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 88</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED JURISDICTIONAL DETERMINATION FORM</td>
<td>U.S Army Corps of Engineers</td>
</tr>
</tbody>
</table>

- **USDA Nat’l Res Conservation Service Soil Survey**
 - Citation:

- **National Wetlands Inventory Maps**
 - Cite Map Name:

- **State/Local Wetland Inventory Maps**

- **FEMA/FIRM Maps**

- **100-year Floodplain Elevation is:**
 - (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs**
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs**
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 - File No. and Date of Response Letter:

- **Applicable/Supporting Case Law**
 - Citation:

- **Applicable/Supporting Scientific Literature**
 - Citation:
 - Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.22524
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Cobbles
- [] Gravel
- [] Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

[] Dye (or other) test performed:

Tributary Has (Check all that apply):
- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining
 - Other (list):

- [] Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

- Properties:
 - Wetland Size (ac):
 - Wetland Type, Explain:
 - Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:

- Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), support habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: Width (ft): TNW Acres
- Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report

- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Approved Jurisdictional Determination Form
U.S. Army Corps of Engineers

Feature ID: 89

☐ USDA Nat’l Res Conservation Service Soil Survey
☐ National Wetlands Inventory Maps
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:

☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. 111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc.) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.00364
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 9

<table>
<thead>
<tr>
<th>Project waters are</th>
<th>river Miles from tributary to RPW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project waters are</td>
<td>30 (or more) aerial (straight) miles from tributary to TNW:</td>
</tr>
<tr>
<td>Project waters are</td>
<td>aerial (straight) miles from tributary to RPW:</td>
</tr>
<tr>
<td>Project waters cross or serve as state boundaries.</td>
<td>Explain:</td>
</tr>
</tbody>
</table>

Identify flow route to TNW

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

- **Tributary is:** Natural
 - Explain:

 Tributary properties with respect to top of bank (estimate):
 - Average Width (ft):
 - Average Depth (ft):
 - Average Side Slopes: 3:1

 Primary tributary substrate composition (check all that apply):
 - Silts
 - Sands
 - Concrete
 - Muck
 - Cobble
 - Gravel
 - Substrate - Vegetation
 - Other, Explain:

 Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]
 - Stable.

 Presence of Run/Riffle/Pool Complexes.
 - Explain: Not present.

 Tributary Geometry:
 - Relatively Straight

 Tributary Gradient (approximate average slope):
 - 1%

(c) Flow:

- **Tributary Provides for:** Ephemeral Flow
- **Estimate average number of flow events in review area/year:** 2-5

 Describe Flow Regime: Ephemeral.

 Other Information on Duration and Volume:

- **Surface Flow is:** Discrete and Confined
 - Characteristics:
- **Subsurface Flow:** No
 - **Explain:**

- **Dye (or other) test performed:**

- **Tributary Has (Check all that apply):**
 - Bed and Banks
 - **OHWM (check all the apply):**
 - OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

 Other (list):

- **Discontinuous?**
 - Explain:

 Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

- **Other (list):**
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean high water Mark indicated by: []
- Oil or scum line along shore objects []
- Fine shell or debris deposits (foreshore) []
- Physical markings/characteristics []
- Tidal gauges []
- Other []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
 Explain: []

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:
Surface Flow is:
Characteristics:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain:
 - Ecological connection Explain:
 - Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

 This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

 - TNWs Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet:
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft):
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant:
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 9

- **USDA Nat'l Res Conservation Service Soil Survey**
- **National Wetlands Inventory Maps**
- **State/Local Wetland Inventory Maps**
- **FEMA/FIRM Maps**
- **100-year Floodplain Elevation is:** (National Geodetic Vertical Datum of 1929)
- **Aerial Photographs** (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
- **Other Photographs** (Name and Date): Ground Photos; June through July 2012, September through October 2012
- **Previous Determinations** File No. and Date of Response Letter:
- **Applicable/Supporting Case Law** Citation:
- **Applicable/Supporting Scientific Literature** Citation:
- **Other Information, Please Specify:**

Additional Comments to Support JD:
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

Drainage Feature 90

State: AZ
County/Parish/borough: Pinal
City: N/A

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICATION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICATION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 2.02691
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Pebbles
- Sands
- Concrete
- Gravel
- Muck
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community
 - Other (list):

Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain:

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs Linear Feet: ___________ Width (ft): ___________ TNW Acres: ___________
 - Wetlands adjacent to TNWs: Acres: ___________

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: ___________
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: ___________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: ___________ Width (Ft): ___________ Acres: ___________
 - Other non-wetland waters: Acres: ___________

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): ___________ Width (feet): ___________ Acres: ___________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: ___________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: ___________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: ___________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters 1464.76 linear feet (ft), 11.70 width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:

- Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 90</th>
</tr>
</thead>
</table>

USDA Nat'l Res Conservation Service Soil Survey	Citation:
National Wetlands Inventory Maps	Cite Map Name:
State/Local Wetland Inventory Maps	
FEMA/FIRM Maps:	
100-year Floodplain Elevation is:	(National Geodetic Vertical Datum of 1929)
Aerial Photographs	Name and Date: Aerials Express Phoenix 2009, BING Aerial Imagery 2011
Other Photographs	Name and Date: Ground Photos; June through July 2012, September through October 2012
Previous Determinations	File No. and Date of Response Letter:
Applicable/Supporting Case Law	Citation:
Applicable/Supporting Scientific Literature	Citation:
Other Information, Please Specify:	

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 91

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal County</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):
15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.02498
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 - □ Tributary flows directly to TNW
 - ☑ Tributary flows through ___ tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

Tributary is: Natural

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Cobble
- Bedrock
- Sands
- Concrete
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:] Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Subsurface Flow: No

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- ☐ High tide line indicated by:__________
- ☐ Mean High water Mark indicated by:__________
- ☐ oil or scum line along shore objects
- ☐ fine shell or debris deposits (foreshore)
- ☐ physical markings/characteristics
- ☐ tidal gauges
- ☐ other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Identify Specific Pollutants, if known:__________

(iv) Biological Characteristics. Channel supports (check all that apply):

- ☐ Riparian Corridor Characteristics:__________
- ☐ Wetland Fringe Characteristics:__________

Habitat for:

- ☐ Federally Listed Species Explain findings:__________
- ☐ Fish/Spawn Areas Explain findings:__________
- ☐ Other environmentally -sensitive species Explain findings:__________
- ☐ Aquatic/Wildlife diversity Explain:__________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics Properties:

- Wetland Size (ac):__________
- Wetland Type, Explain:__________
- Wetland Quality, Explain:__________

Project Wetlands Cross or Serve as State Boundaries, Explain:__________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:__________
- Surface Flow is:__________
- Characteristics:__________
- Subsurface Flow: Explain Findings:__________

(c) Wetland Adjacency Determination with Non-TNW:

- ☐ Wetland Directly Abutting Non-TNW
- ☐ Wetland Not Directly Abutting Non-TNW Explain:
 - ☐ Discrete wetland hydrologic connection
 - ☐ Ecological connection
 - ☐ Separated by berm/barrier

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:__________
- Project Wetlands: Aerial Miles from TNW:__________
- Flow is From:__________
- Estimate approximate Location of Wetland within Floodplain:__________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:

Habitat for:

- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, rearing, and other processes for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:
 - [] TNWs
 - [] Wetlands adjacent to TNWs

2. **RPWs that flow directly or indirectly into TNWs**
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters
 - [] Other non-wetland waters

3. **Non-RPWs that flow directly or indirectly into TNWs.**
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet):
 - Width (feet):

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area:

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area:

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres): __________

7. Impoundments of jurisdictional waters.
Demonstration of Jurisdiction: __________

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
- [] Other Non-wetland Waters MBR acres: ______
- [] Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters linear feet: 571.87 width (ft): 5.34
☐ Other waters acres: ______
☐ Wetlands acres: ______

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - Office Concurs with data sheets/delineation report
 - Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 91

USDA Nat'l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ______________________ (National Geodetic Vertical Datum of 1929)

☐ Aerial Photographs
(Name and Date):
Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☐ Other Photographs
(Name and Date):
Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations
File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law
Citation:

☐ Applicable/Supporting Scientific Literature
Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 92
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W
Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☒ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: ___________________________ □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650

 Drainage Area (sq mi): 0.03396

 Average Annual Rainfall (in): 10

 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW

 □ Tributary flows through ________ tributaries before entering TNW

 Project waters are ________ river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
- Average Width (ft):
- Average Depth (ft):
- Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation
- Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:

Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list): Other (list):

Discontinuous? Explain:
(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species Explain findings:
- Fish/Spawn Areas Explain findings:
- Other environmentally-sensitive species Explain findings:
- Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: Explain:
- Surface Flow is:
 - Characteristics:
- Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Not Directly Abutting Non-TNW
- Discrete wetland hydrologic connection Explain:
- Ecological connection Explain:
- Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

- Project Wetlands: River Miles from TNW:
- Project Wetlands: Aerial Miles from TNW:
- Flow is From:
- Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- □ Riparian Buffer Characteristics (type, average width):
- □ Vegetation type/percent cover. Explain:

Habitat for:

- □ Federally Listed Species Explain:
- □ Fish/Spawn Areas Explain:
- □ Other environmentally-sensitive species Explain:
- □ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage...
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

<table>
<thead>
<tr>
<th>TNWs</th>
<th>Linear Feet:</th>
<th>Width (ft):</th>
<th>TNW Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands adjacent to TNWs:</td>
<td>Acres:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **RPWs that flow directly or indirectly into TNWs**

 | Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: |
 | Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: |

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 | Tributary waters | Linear Feet: | Width (Ft): |
 | Other non-wetland waters: | Acres: |

3. **Non-RPWs that flow directly or indirectly into TNWs.**

 | Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C. |

 Provide estimates of jurisdictional waters within the review area (check all that apply):

 | Length (Linear Feet): | Width (feet): | Acres: |

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**

 | Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. |
 | Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: |
 | Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW |

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW**

 | Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. |

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): _______ Acres: _______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: _______ width (ft): _______
☐ Other Non-wetland Waters MBR acres: _______
☐ Wetlands MBR acres: _______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 599.03 linear feet (ft), 3.78 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☒ US Geological Survey Hydrologic Atlas
☐ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
<table>
<thead>
<tr>
<th>Feature ID: 92</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Nat'l Res Conservation Service Soil Survey Citation:</td>
</tr>
<tr>
<td>National Wetlands Inventory Maps Cite Map Name:</td>
</tr>
<tr>
<td>State/Local Wetland Inventory Maps</td>
</tr>
<tr>
<td>FEMA/FIRM Maps:</td>
</tr>
<tr>
<td>100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)</td>
</tr>
<tr>
<td>Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011</td>
</tr>
<tr>
<td>Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012</td>
</tr>
<tr>
<td>Previous Determinations File No. and Date of Response Letter:</td>
</tr>
<tr>
<td>Applicable/Supporting Case Law Citation:</td>
</tr>
<tr>
<td>Applicable/Supporting Scientific Literature Citation:</td>
</tr>
<tr>
<td>Other Information, Please Specify:</td>
</tr>
<tr>
<td>Additional Comments to Support JD:</td>
</tr>
</tbody>
</table>
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 93

 State: AZ
 County/Parish/borough: Pinal County
 City: N/A

 Center coordinates of site:
 Lat. 32.8482°N
 Long. -111.2599°W

 Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

 Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination.
 Date:

☐ Field Determination.
 Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters
 Linear Feet
 Width (ft) and/or
 Acres
 Wetlands Acres:
 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☐ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drains are ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. **TNW**
 - Identify TNW:
 - □ Vegetation
 - Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**
 - Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that wetland is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 - **(i) General Area Conditions:**
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.12917
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0
 - **(ii) Physical Characteristics:**
 - □ Tributary flows directly to TNW
 - ✔ Tributary flows through 4 tributaries before entering TNW
 - Project waters are 30 (or more) river miles from TNW
APPROVED JURISDICTIONAL DETERMINATION FORM

U.S Army Corps of Engineers

Project waters are [] river

River Miles from tributary to RPW:

Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:

Project waters are [] aerial (straight) miles from tributary to RPW:

Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural

Explain:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Width (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft)</td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes</td>
<td>3:1</td>
</tr>
</tbody>
</table>

Primary tributary substrate composition (check all that apply):

- [] Silts
- [] Sands
- [] Concrete
- [] Muck
- [] Gravel
- [] Substrate - Vegetation

Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. **Explain:** Stable.

Presence of Run/Riffle/Pool Complexes. **Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined

Characteristics:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye (or other) test performed</td>
<td></td>
</tr>
</tbody>
</table>

Subsurface Flow: No

Explain:

Tributary Has (Check all that apply):

- [] Bed and Banks
- [] OHWM (check all the apply): OHWM Indicators:
 - [] Clear, natural line impressed on the bank
 - [] Changes in soil character
 - [] Shelving
 - [] Vegetation matted down, bent or absent
 - [] Leaf litter disturbed or washed away
 - [] Sediment deposition
 - [] Water staining

Other (list):

Other (list):

Discontinuous?

Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

☐ High tide line indicated by: ____________________________ ☐ Mean High water Mark indicated by: ____________________________

☐ oil or scum line along shore objects ☐ survey to available datum

☐ fine shell or debris deposits (foreshore) ☐ physical markings

☐ physical markings/characteristics ☐ vegetation lines/changes in vegetation types

☐ tidal gauges

☐ other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ____________________________

Identify Specific Pollutants, if known: ____________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

☐ Riparian Corridor Characteristics: ____________________________

☐ Wetland Fringe Characteristics: ____________________________

Habitat for:

☐ Federally Listed Species Explain findings: ____________________________

☐ Fish/Spawn Areas Explain findings: ____________________________

☐ Other environmentally sensitive species Explain findings: ____________________________

☐ Aquatic/Wildlife diversity Explain: ____________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

Wetland Size (ac): ____________________________

Wetland Type, Explain: ____________________________

Wetland Quality, Explain: ____________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ____________________________

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: ____________________________ Explain: ____________________________

Surface Flow is: ____________________________

Characteristics: ____________________________

Subsurface Flow: ____________________________ Explain Findings: ____________________________

(c) Wetland Adjacency Determination with Non-TNW:

☐ Wetland Directly Abutting Non-TNW

☐ Wetland Not Directly Abutting Non-TNW

☐ Discrete wetland hydrologic connection Explain: ____________________________

☐ Ecological connection Explain: ____________________________

☐ Separated by berm/barrier Explain: ____________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ____________________________

Project Wetlands: Aerial Miles from TNW: ____________________________

Flow is From: ____________________________

Estimate approximate Location of Wetland within Floodplain: ____________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

□ Riparian Buffer Characteristics (type, average width):

□ Vegetation type/percent cover. Explain:

Habitat for:

□ Federally Listed Species Explain:

□ Fish/Spawn Areas Explain:

□ Other environmentally-sensitive species Explain:

□ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?, size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?

• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gilspie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 - Linear Feet: Width (ft): TNW Acres
 - Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: Width (Ft).
 - Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally”. Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): ______ Acres: ______

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- [] Non wetland-Waters (i.e., rivers, streams): linear feet: ______ width (ft): ______
- [] Other Non-wetland Waters MBR acres: ______
- [] Wetlands MBR acres: ______

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- [x] Non-wetland waters 543.26 linear feet (ft), 7.81 width (ft)
- [] Other waters acres
- [] Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- [x] Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- [x] Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 - [] Office Concurs with data sheets/delineation report
 - [] Office Does Not Concur with data sheets/delineation report
- [] Data Sheets Prepared by the Corps
- [] Corps Navigable Water Study
- [] US Geological Survey Hydrologic Atlas
 - [] USGS NHD Data
 - [] USGS 8 and 12 digit HUC Maps
- [x] US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
93

Feature ID: 93

USDA Nat’l Res Conservation Service Soil Survey Citation:

National Wetlands Inventory Maps Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date):

Other Photographs (Name and Date):

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD) July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 94

- State: AZ
- County/Parish/borough: Pinal County
- City: N/A

- Center coordinates of site: Lat. 32.8482"N Long. -111.2599"W

- Name of nearest waterbody:
- Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Gila River between Powers Butte and Gillespie Dam

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
- Office (Desk) Determination. Date:
- Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWS that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW: ________________________________

□ Vegetation

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a wetland, the significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650

 Drainage Area (sq mi): 0.66153

 Average Annual Rainfall (in): 10

 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW

 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
Feature ID: APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural
Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1
Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation
Other, Explain:

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.
Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined
Characteristics:
Subsurface Flow: No
Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):
- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
Other (list):

Discontinuous? Explain:

If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- [] High tide line indicated by:
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:
Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- [] Riparian Corridor Characteristics:
- [] Wetland Fringe Characteristics:

Habitat for:

- [] Federally Listed Species Explain findings:
- [] Fish/Spawn Areas Explain findings:
- [] Other environmentally sensitive species Explain findings:
- [] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain:
- [] Ecological connection Explain:
- [] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Physical connection:
- [] Discrete line
- [] Continuous line

Other physical markings:
- [] other

Mean High water Mark indicated by:

Survey to available datum

Physical markings

Vegetation lines/changes in vegetation types

Ecoconnection explained:

Separated by berm/barrier explained:

Explain:

Phy/sical characteristics:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

Phychemical characteristics:

Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW (i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain:
- [] Ecological connection Explain:
- [] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Physical connection:
- [] Discrete line
- [] Continuous line

Other physical markings:
- [] other

Mean High water Mark indicated by:

Survey to available datum

Physical markings

Vegetation lines/changes in vegetation types

Ecoconnection explained:

Separated by berm/barrier explained:

Explain:

Phy/sical characteristics:

Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW (i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain:
- [] Ecological connection Explain:
- [] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Physical connection:
- [] Discrete line
- [] Continuous line

Other physical markings:
- [] other

Mean High water Mark indicated by:

Survey to available datum

Physical markings

Vegetation lines/changes in vegetation types

Ecoconnection explained:

Separated by berm/barrier explained:

Explain:

Phy/sical characteristics:

Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW (i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain:
- [] Ecological connection Explain:
- [] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Physical connection:
- [] Discrete line
- [] Continuous line

Other physical markings:
- [] other

Mean High water Mark indicated by:

Survey to available datum

Physical markings

Vegetation lines/changes in vegetation types

Ecoconnection explained:

Separated by berm/barrier explained:

Explain:

Phy/sical characteristics:

Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW (i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain:
- [] Ecological connection Explain:
- [] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Physical connection:
- [] Discrete line
- [] Continuous line

Other physical markings:
- [] other

Mean High water Mark indicated by:

Survey to available datum

Physical markings

Vegetation lines/changes in vegetation types

Ecoconnection explained:

Separated by berm/barrier explained:

Explain:

Phy/sical characteristics:

Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW (i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:
- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: Explain:

Surface Flow is:

Characteristics:

Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW

- [] Discrete wetland hydrologic connection Explain:
- [] Ecological connection Explain:
- [] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:

Physical connection:
- [] Discrete line
- [] Continuous line

Other physical markings:
- [] other

Mean High water Mark indicated by:

Survey to available datum

Physical markings

Vegetation lines/changes in vegetation types

Ecoconnection explained:

Separated by berm/barrier explained:

Explain:

Phy/sical characteristics:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION
A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.
Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.
Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- [] TNWs Linear Feet: Width (ft): TNW Acres
- [] Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

- [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

- [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: Width (Ft).
 - [] Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

- [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.

 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

 - Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
 - USGS NHD Data
 - USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name: Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Feature ID: 94

☐ USDA Nat’l Res Conservation Service Soil Survey Citation:
☐ National Wetlands Inventory Maps Cite Map Name:
☐ State/Local Wetland Inventory Maps
☐ FEMA/FIRM Maps:
☐ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)
☐ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011
☐ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012
☐ Previous Determinations File No. and Date of Response Letter:
☐ Applicable/Supporting Case Law Citation:
☐ Applicable/Supporting Scientific Literature Citation:
☐ Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 95

State: AZ
County/Parish/borough: Pinal County
City: N/A

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ____________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a TNW that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 1.05578
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0
 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 95

U.S. Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
 Average Width (ft):
 Average Depth (ft):
 Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):

-硅酸盐
-鹅卵石
-砾石
-砾石床
-沙子
-混凝土
-泥
-其他，解释：

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.]
Presence of Run/Riffle/Pool Complexes. Explain: Not present.
Tributary Geometry: Relatively Straight
Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5
Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed: Explain:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shingle
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining

Other (list):

- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by:
- Mean High water Mark indicated by:
- oil or scum line along shore objects
- fine shell or debris deposits (foreshore)
- physical markings/characteristics
- tidal gauges
- other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics:
- Wetland Fringe Characteristics:

Habitat for:

- Federally Listed Species
- Fish/Spawn Areas
- Other environmentally sensitive species
- Aquatic/Wildlife diversity

Explain findings:

Findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac):
- Wetland Type, Explain:
- Wetland Quality, Explain:

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is:
Surface Flow is:
Subsurface Flow: Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

- Discrete wetland hydrologic connection
- Ecological connection
- Separated by berm/barrier

Explain:

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).
Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
Habitat for:
- Federally Listed Species Explain:
- Fish/Spawn Areas Explain:
- Other environmentally-sensitive species Explain:
- Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)
All wetland(s) being considered in cumulative analysis:
Wetland acres in total being considered in cumulative analysis:
Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.
Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage.
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - [] TNWs Linear Feet: _______ Width (ft): _______ TNW Acres _______
 - [] Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs
 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______
 - [] Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - [] Tributary waters Linear Feet: _______ Width (ft): _______ Acres: _______
 - [] Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - [] Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - [] Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - [] Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - [] Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - [] Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
95

Feature ID:

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

☐ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C..

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft): Acres:

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 798.61 linear feet, 15.39 width (ft) acres

☑ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 95

☐ USDA Nat’l Res Conservation Service Soil Survey
 Citation:

☐ National Wetlands Inventory Maps
 Cite Map Name:

☐ State/Local Wetland Inventory Maps

☐ FEMA/FIRM Maps:

☐ 100-year Floodplain Elevation is: ____________________________ (National Geodetic Vertical Datum of 1929)

☑ Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

☑ Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

☐ Previous Determinations File No. and Date of Response Letter:

☐ Applicable/Supporting Case Law Citation:

☐ Applicable/Supporting Scientific Literature Citation:
 Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 96
State: AZ
County/Parish/borough: Pinal County
City: N/A
Center coordinates of site: Lat. 32.8482°N
Long. -111.2599°W
Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam
Name of watershed or Hydrologic Unit Code (HUC): 15050100
☑ Check if map/diagram of review are are available upon request
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 a. Indicate presence of water of U.S. in review area (Check all the apply):
 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area
 Non-Wetlands waters Linear Feet Width (ft) and/or Acres
 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):
☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:
 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: ___________________________ □ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 - Watershed Size (sq mi): 49650
 - Drainage Area (sq mi): 0.05620
 - Average Annual Rainfall (in): 10
 - Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 □ Tributary flows directly to TNW
 ✔ Tributary flows through _______ tributaries before entering TNW
 Project waters are _______ (or more) river miles from TNW
Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributary properties with respect to top of bank (estimate):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Width (ft):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Depth (ft):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Side Slopes:</td>
<td>3:1</td>
<td></td>
</tr>
<tr>
<td>Primary tributary substrate composition (check all that apply):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✅ Silts</td>
<td>□ Sands</td>
<td>□ Concrete</td>
</tr>
<tr>
<td>□ Cobbles</td>
<td>□ Gravel</td>
<td></td>
</tr>
<tr>
<td>□ Bedrock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate - Vegetation</td>
<td>Other, Explain:</td>
<td></td>
</tr>
<tr>
<td>Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:</td>
<td>Stable.</td>
<td></td>
</tr>
<tr>
<td>Presence of Run/Riffle/Pool Complexes. Explain:</td>
<td>Not present.</td>
<td></td>
</tr>
<tr>
<td>Tributary Geometry:</td>
<td>Relatively Straight</td>
<td></td>
</tr>
<tr>
<td>Tributary Gradient (approximate average slope):</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

(c) Flow:

<table>
<thead>
<tr>
<th>Tributary Provides for:</th>
<th>Ephemeral Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate average number of flow events in review area/year:</td>
<td>2-5</td>
</tr>
<tr>
<td>Describe Flow Regime:</td>
<td>Ephemeral.</td>
</tr>
<tr>
<td>Other Information on Duration and Volume:</td>
<td></td>
</tr>
<tr>
<td>Surface Flow is:</td>
<td>Discrete and Confined</td>
</tr>
<tr>
<td>Characteristics:</td>
<td></td>
</tr>
<tr>
<td>Subsurface Flow:</td>
<td>No</td>
</tr>
<tr>
<td>Explain:</td>
<td></td>
</tr>
<tr>
<td>Dye (or other) test performed:</td>
<td></td>
</tr>
<tr>
<td>Tributary Has (Check all that apply):</td>
<td></td>
</tr>
<tr>
<td>Bed and Banks</td>
<td></td>
</tr>
<tr>
<td>✅ OHWM (check all the apply): OHWM Indicators:</td>
<td></td>
</tr>
<tr>
<td>Clear, natural line impressed on the bank</td>
<td></td>
</tr>
<tr>
<td>□ Changes in soil character</td>
<td></td>
</tr>
<tr>
<td>□ Shelving</td>
<td></td>
</tr>
<tr>
<td>Vegetation matted down, bent or absent</td>
<td></td>
</tr>
<tr>
<td>Leaf litter disturbed or washed away</td>
<td></td>
</tr>
<tr>
<td>Sediment deposition</td>
<td></td>
</tr>
<tr>
<td>Water staining</td>
<td></td>
</tr>
<tr>
<td>Presence of litter and debris</td>
<td></td>
</tr>
<tr>
<td>□ Destruction of terrestrial vegetation</td>
<td></td>
</tr>
<tr>
<td>□ Presence of wrack line</td>
<td></td>
</tr>
<tr>
<td>Sediment sorting</td>
<td></td>
</tr>
<tr>
<td>Scour</td>
<td></td>
</tr>
<tr>
<td>□ Multiple observed or predicted flow events</td>
<td></td>
</tr>
<tr>
<td>□ Abrupt change in plant community</td>
<td></td>
</tr>
<tr>
<td>Other (list):</td>
<td></td>
</tr>
<tr>
<td>Discontinuous?</td>
<td>Explain:</td>
</tr>
</tbody>
</table>
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: ____________________________
- Mean High water Mark indicated by: _______________________
- Oil or scum line along shore objects
- Fine shell or debris deposits (foreshore)
- Physical markings/characteristics
- Tidal gauges
- Other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain: __

Identify Specific Pollutants, if known: ___

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___
- Wetland Fringe Characteristics: __

Habitat for:

- Federally Listed Species Explain findings: ___
- Fish/Spawn Areas Explain findings: __
- Other environmentally sensitive species Explain findings: __
- Aquatic/Wildlife diversity Explain: __

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- Wetland Size (ac): ____________________________
- Wetland Type, Explain: __
- Wetland Quality, Explain: __

Project Wetlands Cross or Serve as State Boundaries, Explain: __

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: __
Surface Flow is: __
Characteristics: ___
Subsurface Flow: __
Explain Findings: __

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW
 - Discrete wetland hydrologic connection Explain: __
 - Ecological connection Explain: __
 - Separated by berm/barrier Explain: __

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: __
Project Wetlands: Aerial Miles from TNW: ___
Flow is From: __
Estimate approximate Location of Wetland within Floodplain: __
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

<table>
<thead>
<tr>
<th>Biological Characteristics. Wetland supports (check all that apply):</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Riparian Buffer Characteristics (type, average width):</td>
</tr>
<tr>
<td>□ Vegetation type/percent cover. Explain:</td>
</tr>
<tr>
<td>Habitat for:</td>
</tr>
<tr>
<td>□ Federally Listed Species Explain:</td>
</tr>
<tr>
<td>□ Fish/Spawn Areas Explain:</td>
</tr>
<tr>
<td>□ Other environmentally-sensitive species Explain:</td>
</tr>
<tr>
<td>□ Aquatic/Wildlife Diversity Explain:</td>
</tr>
</tbody>
</table>

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs Linear Feet: _____ Width (ft): _____ TNW Acres: _____
- Wetlands adjacent to TNWs: Acres: _____

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _____
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _____
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: _____ Width (ft): _____
 - Other non-wetland waters: Acres: _____

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): _____ Width (feet): _____ Acres: _____

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _____
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: _____
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _____

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: _____

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
☐ Other Non-wetland Waters MBR acres:
☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters 1051.58 linear feet (ft), 5.03 width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☐ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
 ☐ Office Concurs with data sheets/delineation report
 ☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
 ☐ USGS NHD Data
 ☐ USGS 8 and 12 digit HUC Maps
☐ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Cops of Engineers

<table>
<thead>
<tr>
<th>Feature ID: 96</th>
</tr>
</thead>
</table>

- **USDA Nat'l Res Conservation Service Soil Survey**
 - Citation:

- **National Wetlands Inventory Maps**
 - Cite Map Name:

- **State/Local Wetland Inventory Maps**

- **FEMA/FIRM Maps**
 - 100-year Floodplain Elevation is: [] (National Geodetic Vertical Datum of 1929)

- **Aerial Photographs**
 - (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

- **Other Photographs**
 - (Name and Date): Ground Photos; June through July 2012, September through October 2012

- **Previous Determinations**
 - File No. and Date of Response Letter:

- **Applicable/Supporting Case Law**
 - Citation:

- **Applicable/Supporting Scientific Literature**
 - Citation:

 Other Information, Please Specify:

Additional Comments to Support JD:

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 97

<table>
<thead>
<tr>
<th>State</th>
<th>County/Parish/borough</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Pinal County</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody: Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

☑ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)

☐ Office (Desk) Determination. Date:

☑ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.

☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

Non-Wetlands waters	Linear Feet	Width (ft) and/or Acres
Wetlands Acres:		

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW: _____________________________ ☐ Vegetation
 Summarize rationale supporting determination:

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.10613
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:
 (a) Relationship with TNW
 ☐ Tributary flows directly to TNW
 ☑ Tributary flows through 4 tributaries before entering TNW
 Project waters are 30 (or more) river miles from TNW
Feature ID: 97

U.S Army Corps of Engineers

Project waters are [] river Miles from tributary to RPW:
Project waters are [] 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are [] aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW: Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

General Tributary Characteristics

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
<th>Explain:</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):

- Average Width (ft): []
- Average Depth (ft): []
- Average Side Slopes: []

Primary tributary substrate composition (check all that apply):

- Silts []
- Sands []
- Concrete []
- Muck []
- Cobble []
- Gravel []
- Substrate - Vegetation []
- Other, Explain: []

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/Pool Complexes. Explain: Not present.

Tributary Geometry:

Relatively Straight

Tributary Gradient (approximate average slope): 1%

Flow

Tributary Provides for: Ephemeral Flow

Estimate average number of flow events in review area/year: [] 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined | Characteristics: |

Subsurface Flow: No | Explain: |

Dye (or other) test performed: []

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank []
 - Changes in soil character []
 - Shelving []
 - Vegetation matted down, bent or absent []
 - Leaf litter disturbed or washed away []
 - Sediment deposition []
 - Water staining []
 - Presence of litter and debris []
 - Destruction of terrestrial vegetation []
 - Presence of wrack line []
 - Sediment sorting []
 - Scour []
 - Multiple observed or predicted flow events []
 - Abrupt change in plant community []

Other (list): []

Discontinuous? Explain: []
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):
- [] High tide line indicated by:
- [] Mean High water Mark indicated by:
- [] oil or scum line along shore objects
- [] fine shell or debris deposits (foreshore)
- [] physical markings/characteristics
- [] tidal gauges
- [] other

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):
Explain:
Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):
- [] Riparian Corridor Characteristics:
- [] Wetland Fringe Characteristics:

Habitat for:
- [] Federally Listed Species Explain findings:
- [] Fish/Spawn Areas Explain findings:
- [] Other environmentally -sensitive species Explain findings:
- [] Aquatic/Wildlife diversity Explain:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics
Properties:
- [] Wetland Size (ac):
- [] Wetland Type, Explain:
- [] Wetland Quality, Explain:
Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:
Wetland Flow is: Explain:
Surface Flow is:
Characteristics:
Subsurface Flow:
Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:
- [] Wetland Directly Abutting Non-TNW
- [] Wetland Not Directly Abutting Non-TNW
 - [] Discrete wetland hydrologic connection Explain:
 - [] Ecological connection Explain:
 - [] Separated by berm/barrier Explain:

(d) Proximity (Relationship) to TNW
Project Wetlands: River Miles from TNW:
Project Wetlands: Aerial Miles from TNW:
Flow is From:
Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain

Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- [] Riparian Buffer Characteristics (type, average width):
- [] Vegetation type/percent cover. Explain:

Habitat for:
- [] Federally Listed Species Explain:
- [] Fish/Spawn Areas Explain:
- [] Other environmentally-sensitive species Explain:
- [] Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downgradient flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs
 Linear Feet: _______ Width (ft): _______ TNW Acres: _______
 - Wetlands adjacent to TNWs: Acres: _______

2. RPWs that flow directly or indirectly into TNWs
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: _______
 - Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: _______
 Provide estimates for jurisdictional waters in the review are (check all that apply):
 - Tributary waters
 Linear Feet: _______ Width (ft): _______ Acres: _______
 - Other non-wetland waters: Acres: _______

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.c.
 Provide estimates of jurisdictional waters within the review area (check all that apply):
 Length (Linear Feet): _______ Width (feet): _______ Acres: _______

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: _______
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW _______
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 Provide acreage estimates for jurisdictional wetland in the review area: Acres: _______

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section III.C2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams) linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters linear feet (ft), width (ft)
☐ Other waters acres
☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
☐ Office Concurs with data sheets/delineation report
☐ Office Does Not Concur with data sheets/delineation report
☐ Data Sheets Prepared by the Corps
☐ Corps Navigable Water Study
☐ US Geological Survey Hydrologic Atlas
☑ USGS NHD Data
☐ USGS 8 and 12 digit HUC Maps
☑ US Geological Survey Map(s) Scale and Quad Name:
 Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 97

USDA Nat'l Res Conservation Service Soil Survey
Citation:

National Wetlands Inventory Maps
Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ______________________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations
File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)
July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER
Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
Drainage Feature 98

<table>
<thead>
<tr>
<th>State: AZ</th>
<th>County/Parish/borough: Pinal County</th>
<th>City: N/A</th>
</tr>
</thead>
</table>

Center coordinates of site:
Lat. 32.8482°N
Long. -111.2599°W

Name of nearest waterbody:
Gila River between Powers Butte and Gillespie Dam

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:
Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC):
15050100

☐ Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request

☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY)
☐ Office (Desk) Determination. Date:
☐ Field Determination. Date(s): 10/2012

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION
There Are No "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION
There Are No "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.

 a. Indicate presence of water of U.S. in review area (Check all the apply):

 ☐ TNWs (new)
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area

 Non-Wetlands waters: Linear Feet
 Width (ft) and/or Acres

 Wetlands Acres:

 c. Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Explain: Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. **TNW**

 Identify TNW:

 Summarize rationale supporting determination:

2. **Wetland adjacent to TNW**

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 1.50972
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW
(b) General Tributary Characteristics

<table>
<thead>
<tr>
<th>Feature ID: 98</th>
</tr>
</thead>
</table>

Project waters are | river Miles from tributary to RPW:
30 (or more) | aerial (straight) miles from tributary to TNW:
Miles from tributary to RPW:
Miles from tributary to TNW:
identify flow route to TNW:

Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Pichao Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

<table>
<thead>
<tr>
<th>Tributary is:</th>
<th>Natural</th>
</tr>
</thead>
</table>

Tributary properties with respect to top of bank (estimate):
- **Average Width (ft):**
- **Average Depth (ft):**
- **Average Side Slopes:** 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Gravel
- Substrate - Vegetation

Tributary Condition/Stability [e.g., highly eroding, sloughing banks. Explain:]

Stable.

Presence of Run/Riffle/Pool Complexes. Explain:

Not present.

Tributary Geometry:

Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow

Tributary Provides for:

Ephemeral Flow

Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime:

Ephemeral.

Other Information on Duration and Volume:

Surface Flow is:

Discrete and Confined

Characteristics:

Subsurface Flow:

No

Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

Discontinuous?

Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: □
- Mean High water Mark indicated by: □
- oil or scum line along shore objects □
- fine shell or debris deposits (foreshore) □
- physical markings/characteristics □
- tidal gauges □
- other □

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

Explain: ___________________________

Identify Specific Pollutants, if known: ___________________________

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: ___________________________
- Wetland Fringe Characteristics: ___________________________

Habitat for:

- Federally Listed Species Explain findings: ___________________________
- Fish/Spawn Areas Explain findings: ___________________________
- Other environmentally-sensitive species Explain findings: ___________________________
- Aquatic/Wildlife diversity Explain: ___________________________

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): ___________________________
- Wetland Type, Explain: ___________________________
- Wetland Quality, Explain: ___________________________

Project Wetlands Cross or Serve as State Boundaries, Explain: ___________________________

(b) General Flow Relationship with Non-TNW:

- Wetland Flow is: ___________________________
- Surface Flow is: ___________________________

Characteristics: ___________________________

Subsurface Flow: ___________________________
Explain Findings: ___________________________

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW
- Wetland Not Directly Abutting Non-TNW

Discrete wetland hydrologic connection Explain: ___________________________
Ecological connection Explain: ___________________________
Separated by berm/barrier Explain: ___________________________

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW: ___________________________
Project Wetlands: Aerial Miles from TNW: ___________________________
Flow is From: ___________________________
Estimate approximate Location of Wetland within Floodplain: ___________________________
(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

☐ Riparian Buffer Characteristics (type, average width):

☐ Vegetation type/percent cover. Explain:

Habitat for:

☐ Federally Listed Species Explain:

☐ Fish/Spawn Areas Explain:

☐ Other environmentally-sensitive species Explain:

☐ Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in cumulative analysis:

Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
• Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
• Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

- TNWs
- Linear Feet: __________ Width (ft): __________ TNW Acres
- Wetlands adjacent to TNWs: Acres: __________

2. RPWs that flow directly or indirectly into TNWs

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial: __________
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: __________
 - Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters Linear Feet: __________ Width (ft): __________
 - Other non-wetland waters: Acres: __________

3. Non-RPWs that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.
 - Provide estimates of jurisdictional waters within the review area (check all that apply):
 - Length (Linear Feet): __________ Width (feet): __________ Acres: __________

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW: __________
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetland in the review area: Acres: __________

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

The U.S. Army Corps of Engineers is responsible for the determination of jurisdiction in wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetland in the review area (in acres):

7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:

Length (linear feet): Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non wetland-Waters (i.e., rivers, streams): linear feet: width (ft):
- Other Non-wetland Waters MBR acres:
- Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters linear feet (ft), width (ft)
- Other waters acres
- Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.
- Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant
- Office Concurs with data sheets/delineation report
- Office Does Not Concur with data sheets/delineation report
- Data Sheets Prepared by the Corps
- Corps Navigable Water Study
- US Geological Survey Hydrologic Atlas
- USGS NHD Data
- USGS 8 and 12 digit HUC Maps
- US Geological Survey Map(s) Scale and Quad Name:
 - Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 98

USDA Nat’l Res Conservation Service Soil Survey

National Wetlands Inventory Maps

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: ____________ (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD:
SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD)

July 5, 2013

B. DISTRICT OFFICE, FILE NAME, AND NUMBER

Los Angeles District, File No. Pending

C. PROJECT LOCATION AND BACKGROUND INFORMATION: Drainage Feature 99

<table>
<thead>
<tr>
<th>State:</th>
<th>AZ</th>
<th>County/Parish/borough:</th>
<th>Pinal County</th>
<th>City:</th>
<th>N/A</th>
</tr>
</thead>
</table>

Center coordinates of site: Lat. 32.8482°N Long. -111.2599°W

Name of nearest waterbody:

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows:

Gila River between Powers Butte and Gillespie Dam

Name of watershed or Hydrologic Unit Code (HUC): 15050100

- [] Check if map/diagram of review are and/or potential jurisdictional areas is/are available upon request
- [] Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION

There **No** "Navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.

- [] Waters subject to the ebb and flow of the tide.
- [] Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION

There **No** "Waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area.

1. Waters of the U.S.
 - [] Indicate presence of water of U.S. in review area (Check all the apply):
 - [] TNWs (new)
 - [] Wetlands adjacent to TNWs
 - [] Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - [] Non-RPWs that flow directly or indirectly into TNWs
 - [] Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - [] Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - [] Impoundments of jurisdictional waters
 - [] Isolated (interstate or intrastate) waters, including isolated wetlands
 - [] Identify (estimate) size of waters of the U.S. in the review area
 - Non-Wetlands waters: Linear Feet Width (ft) and/or Acres
 - Wetlands Acres:
 - [] Limits (boundaries) of Jurisdiction based on:

2. Non-Regulated Waters/Wetlands (check if applicable):

- [] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined not to be jurisdictional:

 Drainage is ephemeral and does not qualify as a TNW or RPW. Therefore, this drainage could only be considered jurisdictional if it possessed a significant nexus with a downstream TNW. This drainage does not possess a significant nexus with the downstream TNW.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW:
 □ Vegetation

 Summarize rationale supporting determination:

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is "adjacent"

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY)

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary, the wetland is considered to be a TNW if the stream is "relatively permanent" and abuts the wetland directly.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:

 Watershed Size (sq mi): 49650
 Drainage Area (sq mi): 0.04347
 Average Annual Rainfall (in): 10
 Average Annual Snowfall (in): 0

 (ii) Physical Characteristics:

 (a) Relationship with TNW

 □ Tributary flows directly to TNW
 ✔ Tributary flows through 4 tributaries before entering TNW

 Project waters are 30 (or more) river miles from TNW.
Feature ID: 99

APPROVED JURISDICTIONAL DETERMINATION FORM
U.S Army Corps of Engineers

Project waters are river Miles from tributary to RPW:
Project waters are 30 (or more) aerial (straight) miles from tributary to TNW:
Project waters are aerial (straight) miles from tributary to RPW:
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW Towards the Santa Cruz Flats through ephemeral tributaries, tributary to Picacho Reservoir, McClellan Wash, or ag fields. Discrete flow path is not often discernible past these points, but overall topography suggests flows would be towards the Gila River.

(b) General Tributary Characteristics

Tributary is: Natural Explain:

Tributary properties with respect to top of bank (estimate):
Average Width (ft):
Average Depth (ft):
Average Side Slopes: 3:1

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Muck
- Cobble
- Gravel
- Substrate - Vegetation

Other, Explain:

Tributary Condition/ Stability [e.g., highly eroding, sloughing banks. Explain: Stable.

Presence of Run/Riffle/P ool Complexes. Explain: Not present.

Tributary Geometry: Relatively Straight

Tributary Gradient (approximate average slope): 1%

(c) Flow:

Tributary Provides for: Ephemeral Flow
Estimate average number of flow events in review area/year: 2-5

Describe Flow Regime: Ephemeral.

Other Information on Duration and Volume:

Surface Flow is: Discrete and Confined Characteristics:
Subsurface Flow: No Explain:

Dye (or other) test performed:

Tributary Has (Check all that apply):

- Bed and Banks
- OHWM (check all the apply): OHWM Indicators:
 - Clear, natural line impressed on the bank
 - Changes in soil character
 - Shelving
 - Vegetation matted down, bent or absent
 - Leaf litter disturbed or washed away
 - Sediment deposition
 - Water staining
 - Presence of litter and debris
 - Destruction of terrestrial vegetation
 - Presence of wrack line
 - Sediment sorting
 - Scour
 - Multiple observed or predicted flow events
 - Abrupt change in plant community

Other (list):

- Discontinuous? Explain:
If factors other than the OHWN were used to determine lateral extent of CWA jurisdiction (Check all that apply):

- High tide line indicated by: []
- Mean High water Mark indicated by: []
- Oil or scum line along shore objects: []
- Fine shell or debris deposits (foreshore): []
- Physical markings/characteristics: []
- Tidal gauges: []
- Other: []

(iii) Chemical Characteristics:

Characterize Tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc):

- Explain:

Identify Specific Pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian Corridor Characteristics: []
- Wetland Fringe Characteristics: []

Habitat for:

- Federally Listed Species Explain findings: []
- Fish/Spawn Areas Explain findings: []
- Other environmentally ‐ sensitive species Explain findings: []
- Aquatic/Wildlife diversity Explain: []

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics

Properties:

- Wetland Size (ac): []
- Wetland Type, Explain: []
- Wetland Quality, Explain: []

Project Wetlands Cross or Serve as State Boundaries, Explain:

(b) General Flow Relationship with Non-TNW:

Wetland Flow is: [] Explain:

Surface Flow is:

- Characteristics: []

Subsurface Flow: [] Explain Findings:

(c) Wetland Adjacency Determination with Non-TNW:

- Wetland Directly Abutting Non-TNW []
- Wetland Not Directly Abutting Non-TNW []
- Discrete wetland hydrologic connection Explain: []
- Ecological connection Explain: []
- Separated by berm/barrier Explain: []

(d) Proximity (Relationship) to TNW

Project Wetlands: River Miles from TNW:

Project Wetlands: Aerial Miles from TNW:

Flow is From:

Estimate approximate Location of Wetland within Floodplain:
(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics: ect.).

Explain
Identify specific pollutants, if know:

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian Buffer Characteristics (type, average width):
- Vegetation type/percent cover. Explain:
- Habitat for:
 - Federally Listed Species Explain:
 - Fish/Spawn Areas Explain:
 - Other environmentally-sensitive species Explain:
 - Aquatic/Wildlife Diversity Explain:

3. Characteristics of all wetlands adjacent to the tributary (if any)

- All wetland(s) being considered in cumulative analysis:
- Wetland acres in total being considered in cumulative analysis:

Describe each wetland (directly abuts tributary?; size in acres; overall biological, chemical or physical functions):

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below.

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNW.

 Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to section III.D:

This ephemeral drainage is located more than 80 river miles from the nearest TNW, the Gila River between Powers Butte and Gillespie Dam. An analysis of peak yearly discharges and potential flood discharges, in combination with the geomorphology of the Analysis Area, the ephemeral nature of intervening drainage reaches, the significant alteration of the potential path of downstream flow, and the distance to the TNW, suggests that the possibility of a hydrologic connection between this drainage and the TNW is tenuous. No pollutants or critical habitats were identified within the Analysis Area. Additionally, this unnamed ephemeral drainage does not provide lifecycle support functions, nutrients, or organic carbon to species within the TNW. This drainage does not have more than a speculative or insubstantial effect on the physical, chemical, and/or biological integrity of the TNW. Therefore, this unnamed ephemeral drainage
does not possess a significant nexus with the designated downstream TNW, the Gila River between Powers Butte and Gillespie Dam.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY)

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:

☐ TNWs Linear Feet: Width (ft): TNW Acres

☐ Wetlands adjacent to TNWs: Acres:

2. RPWs that flow directly or indirectly into TNWs

☐ Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and Rationale indicating that tributary is perennial:

☐ Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):

☐ Tributary waters Linear Feet: Width (ft).

☐ Other non-wetland waters: Acres:

3. Non-RPWs that flow directly or indirectly into TNWs.

☐ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has significant nexus with a TNW is jurisdictional. Data supporting this conclusion provided at section III.C.

Provide estimates of jurisdictional waters within the review area (check all that apply):

Length (Linear Feet): Width (feet): Acres:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

☐ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

☐ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting and RPW:

☐ Wetlands directly abutting an RPW where tributaries typically flow "Seasonally". Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2 above. Provide rationale indicating that wetland is directly abutting and RPW:

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNW

☐ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetland in the review area: Acres:

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
7. Impoundments of jurisdictional waters.

Demonstration of Jurisdiction:

E. ISOLATED WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE

Supporting rationale:
Length (linear feet):
Acres:

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS:

Non-Jurisdictional Waters

Explain finding of no Significant Nexus: See Section IIIC.2.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non wetland-Waters (i.e., rivers, streams): linear feet:
width (ft):

☐ Other Non-wetland Waters MBR acres:

☐ Wetlands MBR acres:

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):

☑ Non-wetland waters 844.50 linear feet, 8.26 width (ft)

☐ Other waters acres

☐ Wetlands acres

SECTION IV: DATA SOURCES

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☑ Maps, Plans, Plots or Plat Submitted by Applicant/Consultant: WestLand Resources, Inc.

☑ Data Sheets Prepared/Submitted by or on behalf of Applicant/Consultant

☐ Office Concurs with data sheets/delineation report

☐ Office Does Not Concur with data sheets/delineation report

☐ Data Sheets Prepared by the Corps

☐ Corps Navigable Water Study

☐ US Geological Survey Hydrologic Atlas

☐ USGS NHD Data

☐ USGS 8 and 12 digit HUC Maps

☑ US Geological Survey Map(s) Scale and Quad Name:

Cactus Forest, Eloy North, Picacho Pass, Picacho Reservoir, Picacho Reservoir SE, Red Rock, and Valley Farms 7.5-Minute Quadrangles
Feature ID: 99

USDA Nat’l Res Conservation Service Soil Survey

Citation:

National Wetlands Inventory Maps

Cite Map Name:

State/Local Wetland Inventory Maps

FEMA/FIRM Maps:

100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)

Aerial Photographs (Name and Date): Aerials Express Phoenix 2009, BING Aerial Imagery 2011

Other Photographs (Name and Date): Ground Photos; June through July 2012, September through October 2012

Previous Determinations File No. and Date of Response Letter:

Applicable/Supporting Case Law Citation:

Applicable/Supporting Scientific Literature Citation:

Other Information, Please Specify:

Additional Comments to Support JD: