This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): January 9, 2014
B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Los Angeles District, SPL-2013-00430-GS (Lennar Tentative Tract Map 18870)
C. PROJECT LOCATION AND BACKGROUND INFORMATION: The Site is located in the City of Rancho Cucamonga, California. Specifically, it is located east of Interstate 15, east of Etiwanda Avenue at Arrow Route, within the northwestern portion of Section 9, Township 1 South, Range 6 West, of the U.S. Geological Survey Guasti, CA 7.5 minute quadrangle. The property is approximately 80 acres with an electrical transmission line within an easement in the western portion. Approximately 31 acres in the southeastern portion of the site are relatively level and graded for use as a storage yard for large pipe material. The Etiwanda/San Sevaine concrete flood control channel is located along the eastern boundary with mixed residential and industrial development directly to the east of the channel. Existing residential development borders the north and west boundary, and existing industrial development directly south of Arrow Route.

State: CA County/parish/borough: San Bernardino City: Rancho Cucamonga
Center coordinates of site (lat/long in degree decimal format): Lat. 34.10203° N, Long. 117.51767° W
Universal Transverse Mercator: 11S 452251mE 3773590mN
Name of nearest waterbody: Etiwanda Creek Channel
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: N/A
Name of watershed or Hydrologic Unit Code (HUC): East Etiwanda Creek - Santa Ana River 180702031001
☐ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
☐ Office (Desk) Determination. Date: January 9, 2014
☐ Field Determination. Date(s): August 27, 2013

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are no “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply):

 ☐ TNWs, including territorial seas
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs (no adjacent wetlands)
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs (with a surface connection) that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters – Complete III.D.7 and the appropriate sections for the impounded waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands

 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: linear feet: width (ft) and/or acres.
 Wetlands: acres.

 c. Limits (boundaries) of jurisdiction based on: Pick List
 Elevation of established OHWM (if known): .

2. Non-regulated waters/wetlands (check if applicable):
Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:
The Site contains a relic portion of East Etiwanda Creek that historically flowed from the center of the north boundary to the southwest corner of the Site. The natural hydrology to the site has been significantly changed over time. Overall, the Site slopes gently at approximately 1 percent grade toward the south. The concrete lined Etiwanda/San Sevaine Channel is along the entire eastern boundary of the property. The property and the relic channel no longer receive any flow from upstream off-site. Directly to the north of the Site, all surface flow from Foothill Boulevard and the San Sevaine Villas apartments is contained within the curb and gutter system that directs all flow into an underground storm drain system that discharges directly into the Etiwanda/San Sevaine flood control channel. Much of the west boundary contains block wall fencing. All offsite areas of the residential housing to the west flow away from the property and are contained in storm drain systems. The onsite relic portion of Etiwanda Creek terminates at the upstream end at the fill slopes and retaining wall of the San Sevaine Villas project. Because the relic portion of East Etiwanda Creek has been in this location for a significant period of time, the general morphologic features of a fluvial system are still evident. However, no indicators of recent hydrology are present, corresponding to the diversion of all surface water flow from the channel approximately four years ago.

The diversion of flow from all upstream watershed areas has effectively removed the source of hydrology that previously supported the relic portion of East Etiwanda Creek found on the Site. The diversions were authorized as part of the San Sevaine Water Project (SPL-1996-00061-RRS) and the San Sevaine Villas apartment project (SPL-2008-00254-YLC). The relic channel has effectively been disconnected from its source of surface and subsurface hydrology. The total watershed area in which the relic channel is contained is approximately 33 acres of the entire 80 acre site. No recent indicators of surface water flow have been observed within the relic channel, most likely due to the small onsite watershed area and rapid/high permeability of the Site’s alluvial soils. Moreover, upland vegetation is encroaching on the relic channel.

JLC Engineering completed a report (“Natural Condition Runoff Potential for Tentative Tract Map 18870, September 2013”), evaluating the site and obtaining data for modeling the hydrology. In that evaluation, the data show onsite soils have a very high infiltration capacity; and because all upstream off-site flow has been diverted from the relic stream portion, the only water input is direct precipitation. The watershed areas onsite are relatively small. Also, in combination with the small drainage size, the infiltration capacity exceeds the amount of rainfall, even when using 100 year storm event rainfall data. Therefore, using a standard method for determining runoff potential (Rational Method), results were produced demonstrating there is no runoff into or within the relic channel portion. Field observations from the site visit conducted on 27 August 2013 confirmed there are no indications of any recent flow within the relic portion of East Etiwanda Creek and that the coarse alluvial soils appeared to be very porous and highly permeable.

In summary, the Site contains a relic portion of East Etiwanda Creek. However, all upstream and off-site hydrology has been diverted away from the relic channel, and it no longer receives or conducts water flow. Based on the lack of hydrology and hydrologic separation from the watershed, the onsite relic portion of Etiwanda Creek no longer meets the criteria of a jurisdictional drainage, and the relic should be is considered an upland area, and thus is not subject to regulation under Section 404 of the Clean Water Act.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: .
 Summarize rationale supporting determination: .

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: .

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round
(perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: Pick List
 Drainage area: Pick List
 Average annual rainfall: inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 - Tributary flows directly into TNW.
 - Tributary flows through Pick List tributaries before entering TNW.
 Project waters are Pick List river miles from TNW.
 Project waters are Pick List river miles from RPW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Project waters are Pick List aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: .
 Identify flow route to TNW4:
 Tributary stream order, if known:
 (b) General Tributary Characteristics (check all that apply):
 Tributary is: Natural

 Tributary properties with respect to top of bank (estimate):
 Average width: feet
 Average depth: feet
 Average side slopes: Pick List.

 Primary tributary substrate composition (check all that apply):
 □ Silts □ Sands □ Concrete
 □ Cobbles □ Gravel □ Muck
 □ Bedrock □ Vegetation. Type/% cover:
 □ Other. Explain: .

 Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: .
 Tributary geometry: Pick List
 Tributary gradient (approximate average slope): %

 (c) Flow:
 Tributary provides for: Pick List
 Estimate average number of flow events in review area/year: Pick List

3 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

4 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Describe flow regime: .
Other information on duration and volume: .

Subsurface flow: Pick List. Explain findings: .
☐ Dye (or other) test performed: .

Tributary has (check all that apply):
☐ Bed and banks
☐ OHWM\(^{5}\) (check all indicators that apply):
☐ clear, natural line impressed on the bank
☐ changes in the character of soil
☐ shelving
☐ vegetation matted down, bent, or absent
☐ leaf litter disturbed or washed away
☐ sediment deposition
☐ water staining
☐ other (list):
☐ Discontinuous OHWM\(^{6}\). Explain: .

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
☐ High Tide Line indicated by:
☐ Mean High Water Mark indicated by:
☐ survey to available datum;
☐ physical markings;
☐ vegetation lines/changes in vegetation types.
☐ tidal gauges
☐ other (list):

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain: .
Identify specific pollutants, if known: .

(iv) Biological Characteristics. Channel supports (check all that apply):
☐ Riparian corridor. Characteristics (type, average width):
☐ Wetland fringe. Characteristics:
☐ Habitat for:
☐ Federally Listed species. Explain findings:
☐ Fish/spawn areas. Explain findings:
☐ Other environmentally-sensitive species. Explain findings:
☐ Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW: N/A

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
Wetland size: acres
Wetland type. Explain: .
Project wetlands cross or serve as state boundaries. Explain: .

(b) General Flow Relationship with Non-TNW:
Flow is: Pick List. Explain: .

Surface flow is: Pick List
Characteristics: .

Subsurface flow: Pick List. Explain findings: .
☐ Dye (or other) test performed: .

\(^{5}\)A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^{6}\)Ibid.
(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting
- Not directly abutting
 - Discrete wetland hydrologic connection. Explain: .
 - Separated by berm/barrier. Explain: .

(d) Proximity (Relationship) to TNW
Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: .
Identify specific pollutants, if known: .

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width): .
- Vegetation type/percent cover. Explain: .
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: .
 - Other environmentally-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: .

3. Characteristics of all wetlands adjacent to the tributary (if any): N/A
All wetland(s) being considered in the cumulative analysis: Pick List
Approximately (_______) acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: .

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?
Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: linear feet width (ft), Or, acres.
 - Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

3. Non-RPWs that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 - Identify type(s) of waters:

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

 - Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: acres.

7See Footnote # 3.
6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and
 with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this
 conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters. \(^8\)
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE,
 DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY
 SUCH WATERS (CHECK ALL THAT APPLY): \(^9\)
 - which are or could be used by interstate or foreign travelers for recreational or other purposes.
 - from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 - which are or could be used for industrial purposes by industries in interstate commerce.
 - Interstate isolated waters. Explain: .
 - Other factors. Explain: .

 Identify water body and summarize rationale supporting determination: .

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: linear feet width (ft).
 - Other non-wetland waters: acres.
 Identify type(s) of waters: .
 - Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
 - If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers
 Wetland Delineation Manual and/or appropriate Regional Supplements.
 - Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 - Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the
 “Migratory Bird Rule” (MBR).
 - Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
 - Other: (explain, if not covered above): .

 Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR
 factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional
 judgment (check all that apply):
 - Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
 - Lakes/ponds: acres.
 - Other non-wetland waters: acres. List type of aquatic resource: .
 - Wetlands: acres.

 Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such
 a finding is required for jurisdiction (check all that apply):
 - Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
 - Lakes/ponds: acres.
 - Other non-wetland waters: acres. List type of aquatic resource: .
 - Wetlands: acres.

SECTION IV: DATA SOURCES.

\(^8\) To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
\(^9\) Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for
review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant:
☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
☐ Office concurs with data sheets/delineation report.
☐ Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps:
☐ Corps navigable waters’ study:
☐ U.S. Geological Survey Hydrologic Atlas:
☐ USGS NHD data.
☐ USGS 8 and 12 digit HUC maps.
☐ U.S. Geological Survey map(s). Cite scale & quad name: 7.5 min. Guasti.
☐ National wetlands inventory map(s). Cite name:
☐ State/Local wetland inventory map(s):
☐ FEMA/FIRM maps:
☐ 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
☐ Photographs: ☐ Aerial (Name & Date):
1994 USGS digital ortho quarter quadrangle (DOQQ) imagery
2004 USGS high resolution orthoimage
2009 USDA National Agricultural Imagery Program (NAIP) digital ortho imagery
2012 USDA National Agricultural Imagery Program (NAIP) digital ortho imagery
or ☐ Other (Name & Date): M.J. Klinfelter photos 1-29, May 17, 2013.
☐ Previous determination(s). File no. and date of response letter: SPL-2012-00030-SLP.
☐ Applicable/supporting case law:
☐ Applicable/supporting scientific literature:
☐ Other information (please specify):

B. ADDITIONAL COMMENTS TO SUPPORT JD:

SOURCE: USGS Guasti 7.5 Min. Topographic Quadrangle (1981)
Tentative Tract Map
SUBTT18870
CITY OF RANCHO CUCAMONGA, CA

SCALE 1:3,000
DATE 6/10/2013

Legend

Photo Location
Boundary

SOURCE: USDA NAIP digital aerial imagery (2012)

Base Map Source: MJK Field Survey Data,
Microsoft Bing Aerial Photo
SOURCE: NRCS SSURGO Digital Soil data
San Sevaine Channel
Etiwanda Channel
Foothill Blvd Stormdrain Channel
Pipe Supply Storage

SOURCE: USDA NAP digital aerial imagery (2009)
Legend

- Riversidean Alluvial Fan Sage Scrub (RAFSS)
- Disturbed Riversidean Sage Scrub (D-RSS)
- Riversidean Sage Scrub (RSS)
- Disturbed (DIS)
- Ruderal (RUD)

Tentative Tract Map
SUBTT18870

M.J. Klinefelter
GIS & ENVIRONMENTAL CONSULTING
40860 CALIFORNIA OAKS RD #316
MURRIETA, CALIFORNIA 92562
Ph (951) 698-8374 FAX (951) 223-0442

FILE NAME:
S:\gis_data\annon_american\figures_delin\10_Vegetation.mxd

Microsoft Bing Aerial Photo

SCALE
DATE
FIGURE

VEGETATION MAP

Base Map Source: MJK Field Survey Data
Microsoft Bing Aerial Photo

6/4/2013
1:3,000

0 250 500 Feet

CITY OF RANCHO CUCAMONGA, CA